吉林大学学报(地球科学版) ›› 2023, Vol. 53 ›› Issue (6): 1907-1916.doi: 10.13278/j.cnki.jjuese.20230263
于子望1,郑天琪1,程钰翔2,3
Yu Ziwang1, Zheng Tianqi1, Cheng Yuxiang2,3
摘要: 准确预测浅层地下温度对于降低投资风险和推动浅层地热能开发利用具有重要意义。本研究基于粒子群优化(PSO)和极限梯度提升(XGB)的混合模型(PSO-XGB),并将其与K近邻(KNN)、支持向量回归(SVR)、随机森林(RF)和极限梯度提升(XGB)等单一模型进行了比较。首先收集了54组钻孔数据,使用克里金插值法对数据集进行扩充,经过相关性分析最终选择经纬度坐标、年平均降雨量、年平均气温和与断裂距离等因素用作预测100 m地下温度的输入特征。然后利用测试集对预测模型进行验证,使用均方根误差(ERMS)、平均绝对误差(EMA)、决定系数(R2)和均方误差(EMS)等指标评估了模型的性能。结果表明,PSO-XGB混合模型在测试集表现最好,ERMS为0.070 6,EMA值为0.054 9,R2值为0.962 0,EMS值为0.005 0,在精度和拟合程度上明显高于其他模型,可知PSO-XGB混合模型在预测性能方面优于单一模型。
中图分类号:
[1] | 管耀, 王清辉, 冯进, 杨清, 石磊. 基于机器学习的蚀变火成岩测录井综合岩性识别——以南海北部珠江口盆地惠州26-6井区为例#br#[J]. 吉林大学学报(地球科学版), 2024, 54(1): 345-358. |
[2] | 王明常, 丁文, 赵竞争, 吴琳琳, 王凤艳, 纪雪. 基于知识图谱与随机森林的落叶松毛虫害遥感识别[J]. 吉林大学学报(地球科学版), 2023, 53(6): 2006-2017. |
[3] | 白青林, 刘烜良, 张军华, 王福金, 刘中伟, 焦红岩. 基于CV-XGBoost的水下分流河道砂体厚度预测及应用 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1602-1610. |
[4] | 胡向阳, 秦 敏, 张恒荣, 杨 冬, 袁 伟. 基于SVR的定向井随钻电磁波测井层厚影响快速计算[J]. 吉林大学学报(地球科学版), 2023, 53(2): 589-. |
[5] | 杨国华, 李婉露, 孟博. 基于机器学习方法的地下水氨氮时空分布规律[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1982-1995. |
[6] | 王雪冬, 张超彪, 王翠, 朱永东, 王海鹏. 基于Logistic回归与随机森林的和龙市地质灾害易发性评价[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1957-1970. |
[7] | 杨丽萍, 苏志强, 侯成磊, 白宇兴, 王彤, 孔金玲. 基于随机森林的干旱区全极化SAR土壤含水量反演[J]. 吉林大学学报(地球科学版), 2022, 52(4): 1255-. |
[8] | 王明常, 刘鹏, 陈学业, 王凤艳, 宋玉莲, 刘瀚元. 基于GEE的东北三省城市建设用地扩张研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 292-. |
[9] | 牟丹, 张丽春, 徐长玲. 3种经典机器学习算法在火山岩测井岩性识别中的对比[J]. 吉林大学学报(地球科学版), 2021, 51(3): 951-956. |
[10] | 潘保芝, 石玉江, 蒋必辞, 刘丹, 张海涛, 郭宇航, 杨小明. 致密砂岩气层压裂产能及等级预测方法[J]. 吉林大学学报(地球科学版), 2015, 45(2): 649-654. |
[11] | 温忠辉, 任化准, 束龙仓, 王恩, 柯婷婷, 陈荣波. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. J4, 2011, 41(2): 455-458. |
[12] | 邓小英,李月. 基于Ricker子波核的支持向量回归方法及其在地震勘探记录去噪处理中的应用[J]. J4, 2007, 37(4): 821-0827. |
|