吉林大学学报(地球科学版)

• 地质与资源 • 上一篇    下一篇

断裂在纯净砂岩中的变形机制及断裂带内部结构

付晓飞1,2,肖建华1,2,孟令东1,2   

  1. 1.东北石油大学CNPC断裂控藏实验室,黑龙江  大庆163318;
    2.非常规油气成藏与开发省部共建国家重点实验室培育基地,黑龙江  大庆163318
  • 收稿日期:2013-05-12 出版日期:2014-01-26 发布日期:2014-01-26
  • 作者简介:付晓飞(1973-),男,教授,博士,主要从事断层、封闭性及流体运移研究,E-mail:fuxiaofei2008@sohu.com
  • 基金资助:

    国家自然科学基金项目(41072163);黑龙江省普通高等学校新世纪人才支持计划项目(1251-NCET-015)

Fault Deformation Mechanisms and Internal Structure Characteristics of Fault Zone in Pure Sandstone

Fu Xiaofei1,2,Xiao Jianhua1,2,Meng Lingdong1,2   

  1. 1.Laboratory of CNPC Fault Controlling Reservoir, Northeast Petroleum University, Daqing163318,Heilongjiang,China;
    2.Unconventional Oil/Gas Accumulation and Development, Province and Ministry Build State Key Laboratory Breeding Base, Daqing163318,Heilongjiang,China
  • Received:2013-05-12 Online:2014-01-26 Published:2014-01-26

摘要:

以纯净砂岩为对象,考虑了影响断裂变形的主要因素,包括成岩阶段、孔隙度、温度和围压,系统剖析了不同性质砂岩的断裂变形机制、微构造特征及形成断裂带的内部结构,对研究砂岩内断裂封闭性具有重要的指导意义。研究表明:纯净的砂岩在未固结-半固结成岩阶段发生断裂,变形机制为颗粒边界摩擦滑动,导致颗粒旋转和滚动,即为颗粒流,形成的微构造为解聚带,孔渗性同母岩比没有明显降低,断裂带尽管具有断层核和破碎带二分结构,但渗透率比母岩高,为流体垂向运移的通道;在固结成岩阶段(孔隙度大于15%)发生断裂,变形机制为碎裂作用,颗粒边界摩擦滑动导致颗粒旋转,即为碎裂流,形成的微构造为碎裂带,渗透率同母岩比一般降低1~3个数量级,形成侧向有一定封闭能力、垂向渗透的断裂带;固结阶段(孔隙度小于15%)发生断裂,开始由于破裂作用,形成断层角砾岩,伴随着碎裂流发生,形成碎裂岩,因此早期形成高渗透断裂带,后期断层逐渐封闭。固结成岩的砂岩在抬升过程发生断裂,变形机制为破裂作用,形成无内聚力的角砾岩,为高渗透断裂带。在不同成岩阶段发生变形,形成多类型变形构造的叠加,对于一条晚期形成的断层而言,由于不同深度变形机制及微构造类型不同,导致油气选择性充注,碎裂带和压溶胶结碎裂带阻止油气向高孔隙度砂岩中充注,解聚带会成为油气运移的通道,裂缝有利于油气优先充注。因此,高孔隙性砂岩中孔隙度较低的储集层由于碎裂带不发育常常含油气性最好,而低孔隙性砂岩由于裂缝产生含油气性较好。

关键词: 砂岩, 变形机制, 颗粒流, 碎裂流, 解聚带, 碎裂带, 断裂带结构

Abstract:

With sandstone as the object of this article, taking into account the main factors influencing the fracture deformation, including the stage of diagenesis,porosity, temperature and confining pressure, we analyse systematiclly the fracture deformation mechanism of the different nature of sandstone, the micro-structural characteristics and the formation of internal structure of fault zone.It is of great significance on the study of fault sealing in the sandstone. Studies have shown that fracture of pure sandstone occurs in non-consolidated to semi-consolidated of diagenetic stage. Deformation mechanism of grain boundary frictional sliding, called ‘particulate flow’, results in particle rotating and rolling. And the formed micro-structure is Disaggregation band, without significant decrease in porosity and permeability comparing with parent rock.Though fault zone being consist of fault nuclear and damage zone, it is the fluid channel for vertical migration with higher permeability than parent rock. The fracture develops in the consolidation of diagenesis stage (porosity is greater than 15%) which deformation mechanism is cataclasis.The cataclasis flow involves particle rotating and cataclasis between grains. And the formed micro-structure is cataclastic band, with 1 to 3 orders of magnitude decrease in porosity and permeability comparing with parent rock. And formed fault zone is lateral sealing and vertical penetration. The fracture developed in consolidation stage (porosity less than 15%), due to rupturing in the early stage, forms fault breccia, then forms cataclastic rock, accompanying with the occurrence of cataclastic flow. Thus, fault zone is high permeability in the early stage and then fault gradually closed. The deformation mechanisms of consolidation sandstone is cataclasis during the uplift process. It forms incoherent breccia and fault zone of a highly permeability. In different diagenetic stages, it formed overlay of multiple type deformation structures. For a section advanced formed of fault, the differences of deformation mechanism and the micro-constructed type in different depth result in selective filled of the oil and gas. Cataclastic band and solution and cementation band block oil and gas filling in the highly porosity of sandstone. Disaggregation band will became the channel of oil and gas and crack conducive to oil and gas priority filling. Thus, in the high porosity sandstone,due to not development fractured zone, relatively low porosity reservoir often contain the best oil, while in the low porosity sandstone, contain oil and gas well,due to cracking.

Key words: sandstone, deformation mechanism, granular flow, cataclastic flow, disaggregation band, cataclastic band, fault zone structure

中图分类号: 

  • P618.13
[1] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[2] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[3] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[4] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[5] 雷华阳, 王铁英, 张志鹏, 卢海滨, 刘敏. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784-1794.
[6] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[7] 牛子铖, 柳广第, 国殿斌, 王朋, 张家舲, 赵其磊. 查干凹陷中央构造带不同断阶带原油成熟度特征差异及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1047-1059.
[8] 陈冬霞, 庞雄奇, 杨克明, 祝渭平, 严青霞. 川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1611-1623.
[9] 刘立, 白杭改, 刘娜, 明晓冉, 蒋令旭. 洪水型季节性河流砂岩中碎屑黏土的岩石学特征及其研究意义[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1071-1079.
[10] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[11] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[12] 李易霖, 张云峰, 丛琳, 谢舟, 闫明, 田肖雄. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387.
[13] 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411.
[14] 李红英, 张达, 周志广, 柳长峰, 李鹏举, 陈利贞, 谷丛楠. 内蒙古克什克腾旗林西组碎屑锆石LA-ICP-MS年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(1): 146-162.
[15] 刘四兵, 沈忠民, 吕正祥, 宋荣彩, 王鹏. 川西新场气田上三叠统须二、须四段相对优质储层成因差异性分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 993-1001.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!