吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 525-535.doi: 10.13278/j.cnki.jjuese.201602202

• 地质工程与环境工程 • 上一篇    下一篇

大庆徐家围子不同储层改造的干热岩潜力评估

郭亮亮1, 张延军1,2, 许天福2, 金显鹏3   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021;
    3. 大庆油田井下作业分公司, 黑龙江大庆 163453
  • 收稿日期:2015-06-14 发布日期:2016-03-26
  • 通讯作者: 张延军(1968-),男,教授,博士生导师,主要从事岩土多场耦合研究,E-mail:zhangyanj@jlu.edu.cn E-mail:zhangyanj@jlu.edu.cn
  • 作者简介:郭亮亮(1988-),男,博士研究生,主要从事干热岩压裂及开采研究,E-mail:792087685@qq.com
  • 基金资助:

    国家高技术研究发展计划("863"计划)项目(2012AA052803);国家自然科学基金项目(41372239);高等学校博士学科点专项科研基金(20110061110055)

Evaluation of Hot Dry Rock Resource Potential Under Different Reservoir Conditions in Xujiaweizi Area, Daqing

Guo Liangliang1, Zhang Yanjun1,2, Xu Tianfu2, Jin Xianpeng3   

  1. 1. School of Construction Engineering, Jilin University, Changchun 130026, China;
    2. Key Lab of Groundwater Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
    3. Downhole Operation Company of Daqing Oilfield, Daqing 163453, Heilongjiang, China
  • Received:2015-06-14 Published:2016-03-26
  • Supported by:

    Supported by the National High Technology Research and Development Program of China (2012AA052803), National Natural Science Foundation of China (41372239) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20110061110055)

摘要:

针对如何评估大庆徐家围子不同储层干热岩开采潜力的问题,基于徐家围子深井的地质和测井资料,对其深部存在的三种储层情况进行了划分。首先提出了各储层改造方案并建立了三维压裂模型;然后基于储层改造结果,采用水热耦合软件TOUGH2对其进行了换热分析;最终得出了不同储层的干热岩开采潜力。研究结果显示,徐家围子营城组储层是该区目前最适合进行干热岩开采的储层:根据天然裂隙发育程度,可以分为致密储层和天然裂隙发育储层,天然裂隙储层经清水剪切压裂后,采用三垂直井开采模式,最大注入速率30 kg/s,20 a产热量达17000~18500 kJ/s;根据地应力遮挡情况,可以分为遮挡层和无遮挡层,遮挡层和无遮挡层采用传统支撑剂型压裂后,采用三水平井(水平段2000 m)的开采模式,最大注入速率分别为20和32 kg/s,20 a的产热量分别为3500~5350 kJ/s和5600~7760 kJ/s。此外,虽然致密层产出热量远低于天然裂隙发育储层,但传统支撑剂型压裂和水平井技术结合后,致密储层也具有了开采干热岩的潜力。

关键词: 干热岩, 水力压裂, 水平井, 水热模拟, 开采潜力

Abstract:

To evaluate the hot dry rock (HDR) resource under different conditions in Xujiaweizi area in Daqing, based on the real logging data of one deep well we divided the existing conditions into several types. For each formation type, we proposed the corresponding fracturing strategy and created 3D fracturing model. Based on the stimulated reservoir, the hydro-thermal simulations were performed by using TOUGH2, and the extracted thermal energy was evaluated. The results indicate that Yingcheng formation is the most suitable reservoir for HDR development at present; the target formation based on feature fracture could be divided into tight and fractured formation; based on stress confinement condition, it could be subdivided to confined and unconfined formation; after 20 years operation (horizontal part length is 2000 m), the heat production from the confined and unconfined formation are 3500-5350 kJ/s and 5600-7760 kJ/s respectively, when the injection rate are 20 and 32 kg/s respectively; whereas the heat from naturally fractured formation is much higher than that from tight formation (injection rate is 30 kg/s, heat production is 17000-18500 kJ/s). Above all, the horizontal technique makes the tight formation also have the HDR resource development potential.

Key words: hot dry rock, hydraulic fracturing, horizontal well, hydro-thermal simulation, development potential

中图分类号: 

  • P641

[1] 雷宏武, 金光荣,李佳琦,等.松辽盆地增强型地热系统地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版), 2014,44(5):1633-1646. Lei Hongwu, Jin Guangrong, Lijiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China[J]. Journal of Jilin University (Earth Science Edition), 2014,44(5):1633-1646.

[2] 许天福,张延军,曾昭发,等. 增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology Progress in an Enhanced Geothermal System (Hot Dry Rock)[J]. Science & Technology Review, 2012,30(32):42-45.

[3] Hofmann H, Babadagli T, Zimmermann G. Hot Water Generation for Oil Sands Processing from Enhanced Geothermal Systems:Process Simulation for Different Hydraulic Fracturing Scenarios[J]. Applied Energy,2014,113:524-547.

[4] Van der Hoorn K, Heijnen L J, Gankema M E, et al. Hydraulic Fracturing in Limestone:A Case Study of Two EGS Projects in The Netherlands[C]//Proceedings of the 37th Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University,2012.

[5] Zeng Y C, Wu N Y, Su Z, et al. Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating Through a Novel Single Vertical Fracture at Desert Peak Geothermal Field[J]. Energy,2013,63:268-282.

[6] Huang X X, Zhu J L, Niu C K, et al. Heat Extraction and Power Production Forecast of A Prospective Enhanced Geothermal System Site in Songliao Basin, China[J]. Energy,2014,75:360-370.

[7] 周庆华,冯子辉,门广田. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J].中国科学:D辑:地球科学,2007,37(增刊2):177-188. Zhou Qinghua, Feng Zihui, Men Guangtian. Research on Relationship Between Natural Gas Generation and Geothermal Characteristics in Xujiaweizi Depression Area in Northern Songliao Basin[J]. Science China:Series D:Earth Sciences, 2007,37(Sup.2):177-188.

[8] Nolte K G, Smith M. STIMPLAN User's Guide[R]. Tulsa:NSI Technologies, Inc, 2011.

[9] Zhang Y J,Li Z W,Guo L L,et al.Electricity Generation from Enhanced Geothermal Systems by Oilfield Produced Water Circulating Through Reservoir Stimulated by Staged Fracturing Technology for Horizontal Wells:A Case Study in Xujiaweizi Area in Daqing Oilfield, China[J]. Energy, 2014,78:788-805.

[10] Chabora E, Zemach E, Spielman P, et al. Hydraulic Stimulation of Well 27-15, Desert Peak Geothermal Field, Nevada, USA[C]//Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford:Stanford University, 2012:SGP-TR-194.

[11] Genter A, Fritsch D, Cuenot N, et al. Overview of the Current Activities of the European EGS Soultz Project:From Exploration to Electricity Production[C]//Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford:Stanford University, 2009:SGP-TR-187.

[12] Pruess K, Oldenburg C, Moridis G. TOUGH2 User's Guide Version 2.0[R]. Berkeley:Lawrence Berkeley National Laboratory, 1999.

[1] 冯智慧, 张文春, 李向群, 孙广利, 刘财. 高精度分频相干加强技术在微小断层识别中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1571-1579.
[2] 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
[3] 李小林, 吴国禄, 雷玉德, 李重阳, 赵继昌, 白银国, 曾昭发, 赵振, 张珊珊, 赵爱军. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1): 220-229.
[4] 常森, 罗静兰, 付晓燕, 杜支文, 张三, 杜孝华. 苏里格气田水平井地质三维导向技术-以盒8段辫状河储层为例[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1608-1619.
[5] 祝鹏, 林承焰, 李智强, 赵文积, 张华莲. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1862-1869.
[6] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[7] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[8] 兰凯, 熊友明, 闫光庆, 刘明国, 刘匡晓. 川东北水平井储层井壁稳定性及其对完井方式的影响[J]. J4, 2011, 41(4): 1233-1238.
[9] 周炜, 王陶, 伍轶鸣. 示踪剂模拟技术在边水油藏水驱前缘研究中的应用--以哈德油田为例[J]. J4, 2010, 40(3): 549-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!