吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 920-929.doi: 10.13278/j.cnki.jjuese.201603306
李庆洋1, 李振春1, 黄建平1, 李娜2, 苏在荣3
Li Qingyang1, Li Zhenchun1, Huang Jianping1, Li Na2, Su Zairong3
摘要:
贴体网格有限差分正演模拟算法不仅能够精确模拟任意起伏地形下的波场特征,且计算效率较高,是一种很有应用前景的处理西部复杂地表问题的方法;然而,目前求解波动方程时常用的同位网格和标准交错网格,在处理贴体网格起伏地表正演模拟时存在诸多问题。为此,将全交错网格引入到曲线坐标系下,避免了标准交错网格的插值误差和同位网格中奇偶失联引起的高频振荡现象,提高了模拟精度,减小了算法实现的复杂度。在自由边界条件实施时,采用牵引力镜像法计算速度分量,速度自由边界条件配合紧致交错差分格式更新应力分量,得到了较好的效果。随后,重点研究了贴体全交错网格正演模拟算法的影响因素,考虑了网格正交性、网格间距和网格拼接等的影响,并取得了如下认识:算法对网格的正交性没有过分要求;网格间距的突变会引起虚假反射的产生;不同类型的网格拼接对模拟结果不会造成明显的影响。
中图分类号:
[1] 张华,李振春,韩文功.起伏地表条件下地震波数值模拟方法综述[J].勘探地球物理进展,2007,30(5):334-339. Zhang Hua, Li Zhenchun, Han Wengong. Review of Seismic Wave Numerical Simulation from Irregular Topography[J]. Progress in Exploration Geophysics, 2007, 30(5):334-339.[2] 孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362. Sun Jianguo. Methods for Numerical Modeling of Geophysical Fields Under Complex Topographical Conditions:A Critical Review[J]. Global Geology, 2007, 26(3):345-362.[3] 裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油地球物理勘探,2004,39(6):629-634. Pei Zhenglin. Numerical Modeling Using Staggered-Grid High-Order Finite-Difference of Elastic Wave Equation on Arbitrary Relief Surface[J]. Oil Geophysical Prospecting, 2004, 39(6):629-634.[4] 王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述[J]. 地球物理学进展,2008, 23(1):40-48. Wang Xueqiu, Sun Jianguo. The State-of-the-Art in Numerical Modeling Including Surface Topography with Finite-Difference Method[J]. Progress in Geophysics, 2008, 23(1):40-48.[5] 王秀明,张海澜.用于具有不规则起伏自由表面的介质中弹性波模拟的有限差分算法[J].中国科学:G辑:物理学、力学、天文学, 2004, 34(5):481-493. Wang Xiuming, Zhang Hailan. Modeling the Seismic Wave in the Media with Irregular Free Interface by the Finite-Difference Method[J]. Science in China:Series G:Physica, Mechanica and Astronomica, 2004, 34(5):481-493.[6] 郭振波,李振春.起伏地表条件下频率-空间域声波介质正演模拟[J].吉林大学学报(地球科学版),2014, 44(2):683-693. Guo Zhenbo, Li Zhenchun. Acoustic Wave Modeling in Frequency-Spatial Domain with Surface Topography[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(2):683-693.[7] 李振春,李庆洋,黄建平,等. 一种稳定的高精度双变网格正演模拟与逆时偏移方法[J]. 石油物探, 2014, 53(2):127-136. Li Zhenchun,Li Qingyang,Huang Jianping,et al. A Stable and High-Precision Dual-Variable Grid Forward Modeling and Reverse Time Migration Method[J]. Geophysical Prospecting for Petroleum, 2014, 53(2):127-136.[8] Hestholm S, Ruud B. 2-D Finite-Difference Elastic Wave Modeling Including Surface Topography[J]. Geophysical Prospecting, 1994, 42:371-390.[9] 董良国,郭晓玲,吴晓丰,等.起伏地表弹性波传播有限差分法数值模拟[J]. 天然气工业,2007, 27(10):38-41. Dong Liangguo, Guo Xiaoling, Wu Xiaofeng,et al. Finite Difference Numerical Simulation for the Elastic Wave Propagation in Rugged Topography[J]. Natural Gas Industry. 2007, 27(10):38-41.[10] Tarrass I,Giraud L,Thore P.New Curvilinear Scheme for Elastic Wave Propagating in Presence of Curved Topography[J]. Geophysical Prospecting, 2011,59:889-906.[11] Fornberg B. The Pseudo-Spectral Method:Accurate Repre-sentation in Elastic Wave Calculations[J]. Geophysics, 1988, 53:625-637.[12] Komatitsch D, Coute F, Mora P. Tensorial Formulation of the Wave Equation for Modelling Curved Interfaces[J]. Geophysical Journal International, 1996, 127:156-168.[13] Zhang W, Chen X. Traction Image Method for Irregular Free Surface Boundaries in Finite Difference Seismic Wave Simulation[J]. Geophysical Journal International, 2006, 167:337-353.[14] Zhang W, Shen Y, Zhao L. Three-Dimensional Aniso-tropic Seismic Wave Modelling in Spherical Coordinates by a Collocated-Grid Finite-Difference Method[J]. Geophysical Journal International, 2012, 188:1359-1381.[15] 祝贺君,张伟,陈晓非.二维各向异性介质中地震波场的高阶同位网格有限差分模拟[J].地球物理学报, 2009, 52(6):1536-1546. Zhu Hejun, Zhang Wei, Chen Xiaofei. Two-Dimensional Seismic Wave Simulation in Anisotropic Media by Non-Staggered Finite-Difference Method[J]. Chinese Journal of Geophysics, 2009, 52(6):1536-1546.[16] Appelo D, Petersson N A. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces[J]. Communications in Computational Physics, 2009, 5:84-107.[17] 兰海强,刘佳,白志明.VTI介质起伏地表地震波场模拟[J]. 地球物理学报,2011, 54(8):2072-2084. Lan Haiqiang, Liu Jia, Bai Zhiming. Wave-Field Simulation in VTI Media with Irregular Free Surface[J]. Chinese Journal of Geophysics, 2011, 54(8):2072-2084.[18] 丘磊,田钢,石战结, 等.起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J].浙江大学学报(工学版), 2012,46(10):1923-1930. Qiu Lei, Tian Gang, Shi Zhanjie, et al. Finite-Difference Method for Seismic Wave Numerical Simulation in Presence of Topography:In Generally Orthogonal Curvilinear Coordinate System[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(10):1923-1930.[19] Rao Y, Wang Y H. Seismic Waveform Simulation with Pseudo-Orthogonal Grids for Irregular Topographic Models[J]. Geophysical Journal International, 2013, 194:1778-1788.[20] 孙建国,蒋丽丽. 用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J]. 石油地球物理勘探, 2009, 44(4):494-500. Sun Jianguo, Jiang Lili. Orthogonal Curvilinear Grid Generation Technique Used for Numeric Simulation of Geophysical Fields in Undulating Surface Condition[J]. Oil Geophysical Prospecting, 2009, 44(4):494-500.[21] 蒋丽丽,孙建国. 基于Poisson方程的曲网格生成技术[J].世界地质, 2008, 27(3):298-305. Jiang Lili, Sun Jianguo. Source Terms of Elliptic System in Grid Generation[J]. Global Geology, 2008, 27(3):298-305.[22] Lisitsa V,Vishnevskiy D.Lebedev Scheme for the Nume-rical Simulation of Wave Propagation in 3D Anisotropic Elasticity Double Dagger[J]. Geophysical Prospecting, 2010, 58:619-635.[23] 李娜,黄建平,李振春,等. Lebedev网格改进差分系数TTI介质正演模拟方法研究[J]. 地球物理学报,2014, 57(1):261-269. Li Na, Huang Jianping, Li Zhenchun, et al. The Study on Numerical Simulation Method of Lebedev Grid with Dispersion Improvement Coefficients in TTI Media[J]. Chinese Journal of Geophysics, 2014, 57(1):261-269.[24] 李庆洋,黄建平,李振春,等.起伏地表贴体全交错网格仿真型有限差分正演模拟[J].石油地球物理勘探,2015, 50(4):633-642. Li Qingyang, Huang Jianping, Li Zhenchun, et al. Undulating Surface Body-Fitted Grid Seismic Modeling Based on Fully Staggered-Grid Mimetic Finite Difference[J]. Oil Geophysical Prospecting, 2015, 50(4):633-642. |
[1] | 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798. |
[2] | 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192. |
[3] | 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251. |
[4] | 安振芳, 张进, 张建中. 海洋三维VC观测系统优化设计[J]. 吉林大学学报(地球科学版), 2018, 48(1): 271-284. |
[5] | 刘志强, 孙建国, 孙辉, 刘明忱, 高正辉, 石秀林. 曲线坐标系下的完全匹配层吸收边界条件[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1875-1884. |
[6] | 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893. |
[7] | 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198. |
[8] | 刘海飞, 柳杰, 高寒, 郭荣文, 童孝忠, 麻昌英. 五极纵轴激电测深三维有限元正演模拟[J]. 吉林大学学报(地球科学版), 2016, 46(3): 884-892. |
[9] | 熊德明, 张明峰, 吴陈君, 妥进才. 基于模糊层次分析方法的泥质有效低熟气源岩评价[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1620-1630. |
[10] | 战高峰, 朱福, 董伟智, 王静. 季冻区低路堤土基强度与影响因素相关性[J]. 吉林大学学报(地球科学版), 2015, 45(3): 869-875. |
[11] | 朱超, 夏志远, 王传武, 宋光永, 魏学斌, 王鹏, 王海峰, 王波. 致密油储层甜点地震预测[J]. 吉林大学学报(地球科学版), 2015, 45(2): 602-610. |
[12] | 郭振波,李振春. 起伏地表条件下频率-空间域声波介质正演模拟[J]. 吉林大学学报(地球科学版), 2014, 44(2): 683-693. |
[13] | 汤文武,柳建新,童孝忠. 电导率连续变化的线源FCSEM有限元正演模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1646-1654. |
[14] | 巩向博,吕庆田,韩立国,谭尘青. 起伏地表地震波场角度域照明分析[J]. 吉林大学学报(地球科学版), 2013, 43(2): 610-615. |
[15] | 陈勇,何中发,黎兵, 赵宝成. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 212-219. |
|