吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1624-1636.doi: 10.13278/j.cnki.jjuese.201606103

• 地质与资源 • 上一篇    下一篇

苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化

贾珍臻1,2, 林承焰1,2, 任丽华1,2, 董春梅1,2, 宫宝3   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 山东省油藏地质重点实验室, 山东 青岛 266580;
    3. 大庆油田第八采油厂地质大队, 黑龙江 大庆 163514
  • 收稿日期:2016-01-02 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:贾珍臻(1987-),女,博士研究生,主要从事储层地质及油藏描述研究工作,E-mail:jzzzlsh@163.com
  • 基金资助:
    国家科技重大专项(2011ZX05009-003);中国石油大学2014年度研究生创新工程(YCX2014002)

Diagenesis and Reservoir Quality Evolution of Low Permeability Tuffaceous Sandstones in Suderte Oilfield

Jia Zhenzhen1,2, Lin Chengyan1,2, Ren Lihua1,2, Dong Chunmei1,2, Gong Bao3   

  1. 1. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. Shandong Key Laboratory of Petroleum Reservoir, Qingdao 266580, Shandong, China;
    3. Geological Group in Eighth Oil Mining Factory of the Daqing Oil Field, Daqing 163514, Heilongjiang, China
  • Received:2016-01-02 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by National Science and Technology Special Grant(2011ZX05009-003) and 2014 Innovation Project of China University of Petroleum(YCX2014002)

摘要: 海拉尔盆地贝尔凹陷苏德尔特油田兴安岭油层为典型的富火山物质的低渗致密砂岩储层。利用岩心观察、薄片鉴定、扫描电镜分析、压汞测试分析等方法,对兴安岭油层储层成岩作用及其控制下的储层质量演化过程进行了系统研究。结果表明,储层目前主要处于中成岩A期,整体经历了压实作用—早期方解石胶结作用/方沸石胶结作用—方沸石溶解/长石溶解作用/高岭石胶结作用/硅质胶结作用—晚期方解石胶结作用。兴安岭油层储层可以划分出强压实成岩相(I)、弱压实-方解石中强胶结成岩相(II)、中等压实-方沸石/长石强溶解成岩相(III)、中等压实-方沸石/长石中强溶解-高岭石强烈充填成岩相(IV)4种类型的成岩相。压实作用和早期方解石胶结作用导致储层孔隙度和渗透率降低,方沸石和长石的溶解作用有效提高储层孔隙度和渗透率,高岭石的沉淀作用导致储层渗透率大大降低。成岩相I和成岩相II储层质量最差,孔隙度和渗透率均较低,为典型的特低孔特低渗致密储层;成岩相III储层质量最好,具有较高的孔隙度和渗透率,为中孔—中低渗储层;成岩相IV储层质量中等,具有较高的孔隙度,但渗透率较低,为中孔(特)低渗储层。

关键词: 低渗透储层, 成岩作用, 次生孔隙, 成岩相, 储层质量, 海拉尔盆地, 苏德尔特油田

Abstract: The reservoirs in Xing'anling Group in Suderte oil field, the Hailer basin, exhibit low to ultra-low permeability and high tuffaceous content. A comprehensive study on diagenesis and quality evolution of the low permeable reservoirs was carried out utilizing cores, thin sections, SEM analysis, tested physical properties and mercury injection data. The results show that, the reservoirs are at the A period of the mesodiagenetic stage. The entire diagenetic sequences consist of compaction-early analcite cementation/early calcite cementation-feldspar dissolution/analcite dissolution/authigenic kaolinite precipitation/quartz cementation-late calcite cementation. Four types of diagenetic facies are identified as follows, strong compaction facies(I), weak compaction-medium to strong calcite cementation facies(II), medium compaction-analcite/feldspar strong dissolution facies (III), and medium compaction-analcite/feldspar medium to strong dissolution-strong kaolinite cementation facies(IV). Compaction and early calcite cementation resulted in the decrease of porosity and permeability of the reservoirs, while the dissolution of analcite and feldspar effectively improved the reservoir physical property, and the kaolinite cementation damaged the reservoir permeability. Diagenetic facies I and II have the worst reservoir quality and defined as the dense reservoirs characterized by extra-low porosity and permeability. Facies III is the best reservoir, featured by relatively high porosity and permeability, and defined as middle porosity-medium to low permeability reservoir. Facies IV developed medium reservoir quality, which is characterized by high porosity and low permeability and is defined as medium porosity and (extra) low permeability reservoir.

Key words: low permeability reservoir, diagenesis, secondary pores, diagenetic facies, reservoir quality, Hailer basin, Suderte oilfield

中图分类号: 

  • P618.13
[1] 操应长,远光辉,王艳忠,等. 准噶尔盆地北三台地区清水河组低渗透储层成因机制[J]. 石油学报, 2012, 33(5): 758-771. Cao Yingchang, Yuan Guanghui, Wang Yanzhong, et al. Genetic Mechanisms of Low Permeability Reservoirs of Qingshuihe Formation in Beisantai Area, Junggar Basin[J]. Acta Petroleum Sinica, 2012, 33(5): 758-771.
[2] 李建忠,郭彬程,郑民,等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012(4): 607-615. Li Jianzhong, Guo Bincheng, Zheng Min, et al. Main Types, Geological Features and Resource Potential of Tight Sandstone Gas in China[J]. Natutal Gas Geoscience, 2012(4): 607-615.
[3] 朱如凯,白斌,崔景伟,等. 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5): 615-623. Zhu Rukai, Bai Bin, Cui Jingwei, et al. Research Advances of Microstructure in Unconventional Tight Oil and Gas Reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
[4] Higgs K E, Zwingmann H, Reyes A G, et al. Diagenesis, Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research, 2007, 77(12): 1003-1025.
[5] 王建平,樊太亮,王宏语,等. 苏德尔特油田铜钵庙组-南屯组油层多级次基准面旋回格架中的储层非均质性特征[J]. 地学前缘, 2012, 19(2): 141-150. Wang Jianping, Fan Tailiang, Wang Hongyu, et al. Reservoir Heterogeneity Characteristics in the Framework of Multi-Grade Base Level Cycle of the Oil Layers of Tongbomiao and Nantun Formations in the Sudeerte Oil Field[J]. Earth Science Frontiers, 2012, 19(2): 141-150.
[6] 刘振兴. 苏德尔特油田兴安岭油层层序格架内储层非均质性及储层评价[D]. 北京:中国地质大学(北京), 2009. Liu Zhenxing. Reservoir Heterogeneity Under Sequence Frame and Reservoir Assessment in Xinganling Reservoir of Sudeerte Oil Field[D]. Beijing:China University of Geosciences (Beijing), 2009.
[7] 陈崇阳,高有峰,吴海波,等. 海拉尔盆地火山岩的锆石U-Pb年龄及其地层学意义[J]. 吉林大学学报(地球科学版), 2015, 45(增刊1):1503-19. Chen Chongyang, Gao Youfeng, Wu Haibo, et al. Zircon U-Pb Chronology of Volcanic Rocks in the Hailaer Basin,NE China and Its Stratigraphy Implications[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Sup.1):1503-19
[8] 赵磊,高福红,张彦龙,等. 海拉尔盆地中生代火山岩锆石U-Pb年代学及其地质意义[J]. 岩石学报,2013, 29(3): 864-874. Zhao Lei, Gao Fuhong, Zhang Yanlong, et al. Zircon U-Pb Chronology and Its Geological Implications of Mesozoic Volcanic Rocks from the Hailaer Basin[J]. Acta Petrologica Sinica, 2013, 29(3): 864-874.
[9] 肖莹莹,樊太亮,王宏语. 苏德尔特油田南屯组成岩作用与储集层特征[J]. 新疆石油地质, 2011(1):23-25. Xiao Yingying, Fan Tailiang, Wang Hongyu. Diagenesis and Reservoir Characteristics of Nantun Formation in Sudeerte Oilfield[J]. Xinjiang Petroleum Geology, 2011(1):23-25.
[10] 申家年,宋婷,朱金磊. 海拉尔盆地贝尔凹陷埋藏沉降史[J]. 黑龙江科技学院学报, 2013, 23(2): 176-180. Shen Jianian, Song Ting, Zhu Jinlei. Burial and Subsidence History of Beier Depression in Hailaer Basin[J]. Journal of Heilongjiang Institute of Science and Technology, 2013, 23(2): 176-180.
[11] 宋婷. 海拉尔盆地贝尔凹陷埋藏沉降史研究[D]. 大庆: 东北石油大学, 2013. Song Ting. The Study of Burial and Subsidence History of Beier Depression in Hailar Basin[D]. Daqing: Northeast Petroleum University, 2013.
[12] 崔军平,任战利,陈玉林. 海拉尔盆地贝尔凹陷热演化史与油气关系研究[J]. 沉积学报, 2011, 29(2): 388-394. Cui Junping, Ren Zhanli, Chen Yulin. Study on the Relations Between Geothermal History and Oil-Gas Generation in Beier Depression of Hailaer Basin[J]. Acta Sedimentologica Sinica, 2011, 29(2): 388-394.
[13] Cao Yingchang, Yuan Guanghui, Li Xiaoyan, et al. Characteristics and Origin of Abnormally High Porosity Zones in Buried Paleogene Clastic Reservoirs in the Shengtuo Area, Dongying Sag, East China[J]. Petroleum Science, 2014, 11(3): 346-362.
[14] 操应长,葸克来,王健,等. 砂岩机械压实与物性演化成岩模拟实验初探[J]. 现代地质, 2011, 25(6): 1152-1158. Cao Yingchang, Xi Kelai, Wang Jian, et al. Preliminary Discussion of Simulation Experiments on the Mechanical Compaction and Physical Property Evolution of Sandstones[J]. Geoscience, 2011, 25(6): 1152-1158.
[15] 寿建峰.砂岩动力成岩作用[M]. 北京: 石油工业出版社, 2005. Shou Jianfeng. Kinetics of Sandstone Diagenesis[M]. Beijing: Petroleum Industry Press, 2005.
[16] Yuan Guanghui, Gluyas Jon, Cao Yingchang, et al. Diagenesis and Reservoir Quality Evolution of the Eocene Sandstones in the Northern Dongying Sag, Bohai Bay Basin, East China[J]. Marine and Petroleum Geology, 2015, 62: 77-89.
[17] Stroker T M, Harris N B, Crawford Elliott W, et al. Diagenesis of a Tight Gas Sand Reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado[J]. Marine and Petroleum Geology, 2013, 40: 48-68.
[18] Dutton S P. Calcite Cement in Permian Deep-Water Sandstones, Delaware Basin, West Texas: Origin, Distribution, and Effect on Reservoir Properties[J]. AAPG Bulletin, 2008, 92(6): 765-787.
[19] 王宏语, 樊太亮,肖莹莹,等. 凝灰质成分对砂岩储集性能的影响[J]. 石油学报, 2010, 31(3): 432-439. Wang Hongyu, Fan Tailiang, Xiao Yingying,et al. Effect of Tuffaceous Components on Physical Property of Sandstone Reservoir[J] Acta Petrolei Sinica, 2010, 31(3): 432-439.
[20] 朱世发,朱筱敏,王绪龙,等. 准噶尔盆地西北缘二叠系沸石矿物成岩作用及对油气的意义[J]. 中国科学:地球科学, 2011, 41(11): 1602-1612. Zhu Shifa, Zhu Xiaomin, Wang Xulong, et al. Diagenesis of Zeolite and Its Control on Petroleum Reservoir Quality of Permian in Northwestern Margin of Junggar Basin[J]. Scientia Sinica Terrae, 2011, 41(11): 1602-1612.
[21] 孙玉善,刘新年,张艳秋,等. 中国西部地区方沸石胶结相与碎屑岩次生优质储集层形成机制[J]. 古地理学报, 2014, 16(4): 517-526. Sun Yushan, Liu Xinnian, Zhang Yanqiu, et al. Analcite Cementation Facies and Forming Mechanism of High-Quality Secondary Clastic Rock Reservoirs in Western China[J]. Journal of Palaeogeography, 2014, 16(4): 517-526.
[22] Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Selective Dissolution of Feldspars in the Presence of Carbonates: The Way to Generate Secondary Pores in Buried Sandstones by Organic CO2[J]. Marine and Petroleum Geology, 2015, 60: 105-119.
[23] 远光辉,操应长,葸克来,等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报, 2013, 34(5): 853-866. Yuan Guanghui, Cao Yingchang, Xi Kelai, et al. Feldspar Dissolution and Its Impact on Physical Properties of Paleogene Clastic Reservoirs in the Northern Slope Zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866.
[24] Giles M R. Mass Transfer and Problems of Secondary Porosity Creation in Deeply Buried Hydrocarbon Reservoirs[J]. Marine and Petroleum Geology, 1987, 4(3): 188-204.
[25] Giles M R, De Boer R B. Origin and Significance of Redistributional Secondary Porosity[J]. Marine and Petroleum Geology, 1990, 7(4): 378-397.
[26] Surdam R C, Boese S W. The Chemistry of Secondary Porosity[J]. Classic Diagenesis, 1984: 127-150.
[27] Bahlis A B, De Ros L F. Origin and Impact of Authigenic Chlorite in the Upper Cretaceous Sandstone Reservoirs of the Santos Basin, Eastern Brazil[J]. Petroleum Geoscience, 2013, 19(2): 185-199.
[28] Bloch S, Lander R H, Bonnell L. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328.
[29] 梁建设,王琪,郝乐伟,等. 成岩相分析方法在南海北部深水区储层预测的应用:以珠江口盆地白云凹陷为例[J]. 沉积学报, 2011, 29(3): 503-511. Liang Jianshe, Wang Qi, Hao Lewei, et al. Application of Diagenetic Facies Analysis to Reservoir Prediction in Deep Water Area of the Northern South China Sea: A Case Study from Baiyun Sag, Zhujiangkou Basiin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 503-511.
[1] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[2] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[3] 刘鑫金, 冯阵东, 李聪, 周艳, 王亚明. 近源湖盆砂砾岩储层次生溶孔成因探讨——以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 393-404.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 朱传华, 王伟锋, 王青振, 李玉坤. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1580-1588.
[6] 陈波, 王子天, 康莉, 张顺存, 史基安. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版), 2016, 46(1): 23-35.
[7] 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309.
[8] 马伯永, 王根厚, 李尚林, 徐红燕. 羌塘盆地东部中侏罗统陆源碎屑与碳酸盐混合沉积成岩特征[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1310-1321.
[9] 陈彬滔, 潘树新, 梁苏娟, 张庆石, 刘彩燕, 王革. 陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1002-1010.
[10] 赵小青, 程日辉, 于振锋, 孙凤贤, 王鹏, 高会军. 海拉尔盆地乌尔逊凹陷南一段物源-沉积体系与构造背景[J]. 吉林大学学报(地球科学版), 2015, 45(1): 61-80.
[11] 王淑萍,徐守余,董春梅,王丽萍,刘春平. 东营凹陷民丰洼陷北带沙四下亚段深层天然气储层成岩作用[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1747-1759.
[12] 尤丽,张迎朝,李才,张哨楠,招湛杰. 基于沉积成岩-储集相分析确定文昌9区低渗储层“甜点”分布[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1432-1440.
[13] 郭佳,曾溅辉,宋国奇,张永旺,王学军,孟伟. 东营凹陷中央隆起带烃类流体活动在成岩作用上的响应[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1123-1133.
[14] 田建锋,喻建,张庆洲. 孔隙衬里绿泥石的成因及对储层性能的影响[J]. 吉林大学学报(地球科学版), 2014, 44(3): 741-748.
[15] 赖锦,王贵文,陈阳阳,黄龙兴,张莉莉,王迪,孙艳慧,李梅. 川中蓬莱地区须家河组须二段储层成岩相与优质储集层预测[J]. 吉林大学学报(地球科学版), 2014, 44(2): 432-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!