吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1823-1829.doi: 10.13278/j.cnki.jjuese.201606206

• 地质工程与环境工程 • 上一篇    下一篇

基于多元回归分析的铬污染地下水风险评价方法

刘海龙1, 马小龙2, 袁欣1, 穆环玲1, 冷冰原1, 洪梅1   

  1. 1. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021;
    2. 吉林省水文地质调查所, 长春 130103
  • 收稿日期:2016-03-01 出版日期:2016-11-26 发布日期:2016-11-26
  • 通讯作者: 洪梅(1972),女,教授,博士,主要从事污染场地控制与修复方面的研究,E-mail:hongmei@jlu.edu.cn E-mail:hongmei@jlu.edu.cn
  • 作者简介:刘海龙(1989),男,硕士,主要从事污染场地控制与修复方面的研究,E-mail:568043143@qq.com
  • 基金资助:
    国家水体污染控制与治理科技重大专项课题(2012ZX07207-007);中国地质调查局项目(1212011220987)

Risk Assessment Method of Chromium(Ⅵ) Polluting Groundwater Based on Multiple Regression Analysis

Liu Hailong1, Ma Xiaolong2, Yuan Xin1, Mu Huanling1, Leng Bingyuan1, Hong Mei1   

  1. 1. Key Lab of Groundwater Resources and Environment of Ministry of Education, Jilin University, Changchun, 130021, China;
    2. Hydrogeologic Survey of Jilin Province, Changchun 130103, China
  • Received:2016-03-01 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07207-007) and Geological Survey Projects of China Geological Survey (1212011220987)

摘要: 土-水分配系数(Kd)是表征重金属污染物在土壤包气带中迁移能力的重要参数,受污染物质量浓度、pH值、有机质质量分数、铁铝氧化物质量分数等多种因素影响。本文通过实验研究了分配系数与各种影响因素之间的关系,基于多元回归分析方法得到了分配系数与影响因素的关系方程;并以分配系数、泄漏量、土壤孔隙度、初始含水率为风险因子建立了地下水污染风险评价方法。以某工厂铬废液的泄露为案例,采用构建的方法进行地下水污染风险评价。结果表明:该处地下水被污染的风险等级为中等。地下水污染风险评价方法的建立为重金属污染地下水的监测管理提供了一种有效方法。

关键词: 多元回归分析, 六价铬, 分配系数, 地下水, 风险评价

Abstract: Soil-water distribution coefficient (Kd) is an important parameter to characterize the migration of heavy metal pollutants in the vadose zone,Kdof Cr(Ⅵ) is influenced by the concentration of pollutants, pH value, organic matter content, iron oxide content, aluminum oxide content and other factors.The relationship between Kd and influence factors was investigated by experiment.Based on the multiple regression analysis method,relation equation between the distribution coefficient and various factors was obtained, and the risk assessment method of groundwater pollution was established with the distribution coefficient, leakage, soil porosity, initial water content as risk factors. With the case of chromium waste liquid leakage, pollution risk assessment of groundwater was carried out based on established method. The results show that the risk level of groundwater contamination is moderate. The establishment of groundwater pollution risk assessment method provides a method for management of contaminated groundwater by heavy metal.

Key words: multiple regression analysis, Cr(Ⅵ), distribution coefficient, groundwater, risk assessment

中图分类号: 

  • X523
[1] 黄顺红. 铬渣堆场铬污染特征及其铬污染土壤微生物修复研究[D]. 长沙: 中南大学, 2009. Huang Shunhong. Characteristics of Chromium Pollution at Chromium-Containing Slag Site and Chromium (Ⅵ) Bioremediation in the Contaminated Soil[D]. Changsha: Central South University,2009.
[2] 李晶晶, 彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律[J]. 工业安全与环保, 2005, 31(3): 31-33. Li Jingjing, Peng Enze. Summarization on the Existing Form and Transferring Rules of Chromium in Soil[J]. Industrial Safety and Environmental Protection, 2005, 31(3): 31-33.
[3] 李喜林, 王来贵, 赵奎,等. 铬渣浸溶Cr(Ⅵ)溶解释放规律研究:以锦州堆场铬渣为例[J]. 地球与环境, 2013, 41(5):518-523. Li Xilin, Wang Laigui, Zhao Kui, et al.Research on Cr(Ⅵ) Releasing Mechanism by Chromium Slag Dissolution as Exemplified by the Chromium Slag of Jinzhou Yard[J]. Earth and Environment, 2013, 41(5):518-523.
[4] 张伟红. 地下水污染预警研究[D]. 长春:吉林大学, 2007. Zhang Weihong. Study on the Early Warning of Groundwater Pollution[D]. Changchun: Jilin University, 2007.
[5] Butt T E, Oduyemi K O K. A Holistic Approach to Concentration Assessment of Hazards in the Risk Assessment of Landfill Leachate[J]. Environment International, 2003, 28(7): 597-608.
[6] Nixon W B, Murphy R J, Stessel R I. An Empirical Approach to the Performance Assessment of Solid Waste Landfills[J]. Waste Management &Research, 1997, 15(6): 607-626.
[7] Rahman A. A GIS Based DRASTIC Model for Asse-ssing Groundwater Vulnerability in Shallow Aquifer in Aligarh, India[J]. Applied Geography,2008, 28(1): 32-53.
[8] Al-Adamat R A N, Foster I D L, Baban S M J. Groundwater Vulnerability and Risk Mapping for the Basaltic Aquifer of the Azraq Basin of Jordan Using GIS, Remote Sensing and DRASTIC[J]. Applied Geography, 2003, 23(4): 303-324.
[9] 梁婕, 谢更新, 曾光明, 等. 基于随机-模糊模型的地下水污染风险评价[J]. 湖南大学学报(自然科学版), 2009, 36(6): 54-58. Liang Jie, Xie Gengxin, Zeng Guangming, et al. An Integrated Stochastic-Fuzzy Modeling Approach for the Risk Assessment of Groundwater Pollution[J]. Journal of Hunan University(Natural Sciences), 2009, 36(6): 54-58.
[10] Connell L D, Van den Daele G. A Quantitative App-roach to Aquifer Vulnerability Mapping[J]. Journal of Hydrology, 2003, 276(1): 71-88.
[11] Babiker I S, Mohamed M A A, Hiyama T, et al. A GIS-Based DRASTIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan[J]. Science of the Total Environment, 2005, 345(1): 127-140.
[12] 周长松, 邹胜章, 李录娟, 等. 岩溶区典型石灰土Cd形态指示意义及风险评价:以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562. Zhou Changsong, Zou Shengzhang, Li Lujuan, et al. Implications of Cadmium Forms and Risk Assessment of Calcareous Soil in Karst Area: A Case Study of Maocun in Guilin, China[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 552-562.
[13] Hellerich L A, Nikolaidis N P. Studies of Hexavalent Chromium Attenuation in Redox Variable Soils Obtained from a Sandy to Sub-Wetland Groundwater Environment[J]. Water Research, 2005, 39(13): 2851-2868.
[14] Wittbrodt P R, Palmer C D. Reduction of Cr (Ⅵ) in the Presence of Excess Soil Fulvic Acid[J]. Environmental Science &Technology, 1995, 29(1): 255-263.
[15] Banks M K, Schwab A P, Henderson C. Leaching and Reduction of Chromium in Soil as Affected by Soil Organic Content and Plants[J]. Chemosphere, 2006, 62(2): 255-264.
[16] Bartlett R J. Chromium Cycling in Soils and Water: Links, Gaps, and Methods[J]. Environmental Health Perspectives, 1991, 92: 17.
[17] 宣昊, 滕彦国, 倪师军, 等. 基于地球化学基线的土壤重金属污染潜在生态风险评价[J]. 矿物岩石, 2005, 25(4): 69-72. Xuan Hao, Teng Yanguo, Ni Shijun, et al. Potential Ecological Risk Assessment on Heavy Metal in the Soil of Dexing Area Based on Geochemical Baseline[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 69-72.
[18] 李卓, 吴普特, 冯浩,等. 黏粒质量分数对土壤水分蓄持能力影响的模拟试验[J]. 中国水土保持科学, 2009, 7(5):94-99. Li Zhuo, Wu Pute, Feng Hao, et al. Effects of Soil Clay Content on Soil Water-Holding Capacity by Simulated Experiments[J]. Science of Soil and Water Conservation, 2009, 7(5):94-99.
[1] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[2] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[3] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[4] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[5] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[6] 袁晓婕, 郭占荣, 黄磊, 章斌, 马志勇, 刘洁. 用镭-226示踪胶州湾的海底地下水排泄[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1490-1500.
[7] 杨悦锁, 张戈, 宋晓明, 温玉娟, 张文卿. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1176-1190.
[8] 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
[9] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[10] 彭令, 徐素宁, 彭军还. 多源遥感数据支持下区域滑坡灾害风险评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 175-186.
[11] 危润初, 肖长来, 方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版), 2016, 46(1): 202-210.
[12] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[13] 蒋秀姿, 文宝萍, 蒋树, 冯传煌, 赵成, 李瑞冬. 甘肃舟曲锁儿头滑坡活动的主控因素分析[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1798-1807.
[14] 吴鸣, 吴剑锋, 施小清, 刘杰, 陈干, 吴吉春. 基于谐振子遗传算法的高效地下水优化管理模型[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1485-1492.
[15] 余楚, 张翼龙, 孟瑞芳, 曹文庚. 河套平原浅层地下水动态监测网优化设计[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1173-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!