吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1085-1104.doi: 10.13278/j.cnki.jjuese.20170179

• 地质与资源 • 上一篇    下一篇

东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义

张强, 丁清峰, 宋凯, 程龙   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2017-12-20 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 丁清峰(1976-),男,教授,博士,主要从事矿床学研究和教学工作,E-mail:dingqf@jlu.edu.cn E-mail:dingqf@jlu.edu.cn
  • 作者简介:张强(1991-),男,研究生,主要从事矿物学、岩石学、矿床学方面的研究,E-mail:610354492@qq.com
  • 基金资助:
    国家自然科学基金项目(41572056)

Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance

Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2017-12-20 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41572056)

摘要: 洪水河铁矿区位于东昆仑造山带中段北带。在野外地质工作的基础上,对狼牙山组近矿围岩千枚岩开展了岩相学、地球化学、LA-ICP-MS碎屑锆石U-Pb年代学及Hf同位素研究工作。主微量元素结果显示,狼牙山组千枚岩的原岩可能是一套来自壳源的成熟度高的砂岩,古气候古地理特征是温暖湿润环境,经历了中高程度的化学风化作用,物源为碱性长石含量较低的长英质岩石,沉积构造环境可能处于被动大陆边缘。碎屑锆石年代学研究结果显示,本区狼牙山组千枚岩的沉积年龄可能为(788±9)~(515.2±4.4)Ma,说明其沉积时代并非前人认为的蓟县系。洪水河铁矿床应该是当时全球性含铁建造的实例之一,反映的是Sturtian冰期的结束。另外,这些碎屑锆石的εHft)值为-30.4~8.3,说明Hf同位素来源组成具有极大的非均一性,两阶段模式年龄为3 596~1 448 Ma,具有正和负的εHft)值,说明这类锆石的母岩中既有新生的地壳物质,又有再造的古老地壳,可能分别对应中元古代的新生地壳和太古宙地壳的再造。通过对锆石年龄分类讨论,并将碎屑锆石年龄与其邻区出露的老地层和岩体时代进行对比,推测太古宙基底物质、白沙河岩组、小庙群、万宝沟群及中元古代晚期在东昆仑地区形成的中酸性岩体为其物源。

关键词: Hf同位素, 碎屑锆石, 地球化学, 千枚岩, 洪水河铁矿床, 东昆仑造山带

Abstract: The Hongshuihe iron ore district is located in the north-middle part of the eastern Kunlun orogenic belt. On the basis of geological field work, the authors applied petrography, geochemistry, LA-ICP-MS detrital zircon U-Pb geochronology,and Hf isotope to the ore-hosting phyllite of the Langyashan Formation. The results of the main and trace elements showed that the original rocks of the phyllite of the Langyashan Formation were possibly composed of high-maturity sandstones from the crust source, showing the warm and humid paleo-climate and paleo-geographic features. The original rocks were experienced the medium-high degree chemical weathering, whose provenance was the felsic rocks with low content of alkaline feldspar. Their sedimentary tectonic environment might be on the edge of the passive continent. The detrital zircon geochronological results showed that the sedimentary age of the phyllite was between (788±9) Ma and (515.2±4.4) Ma, different from the age of Jixianian. The Hongshuihe iron deposit should be one of the examples of the global banded iron formations, which reflect the end of the Sturtian ice age. In addition, the εHf(t) values of these detrital zircons varies from -30.4 to 8.3, indicating that the composition of Hf isotope sources is highly heterogeneous, with a two-stage model age of 3 596-1 448 Ma, which indicates that the source rocks of these zircons include both newborn crust material and reconstructed ancient crust material. The newborn crust might be from Mesoproterozoic, and the reconstructed crust might be from Archean. Through discussing on the classification of zircon ages and comparing the ages of some old sedimentary strata and intrusive rocks of the adjacent areas, it is inferred that the basement of Archean, Baishahe Formation, Xiaomiao Group, Wanbaogou Group and the intermediate-acid rocks formed in the eastern Kunlun in the late period of Mesoproterozoic are the possible provenances.

Key words: Hf isotope, detrital zircons, geochemistry, phyllite, Hongshuihe iron deposit, eastern Kunlun orogenic belt

中图分类号: 

  • P597.3
[1] 许长坤,刘世宝,赵子基,等. 青海省东昆仑成矿带铁矿成矿规律与找矿方向研究[J]. 地质学报,2012,86(10):1621-1636. Xu Changkun, Liu Shibao, Zhao Ziji, et al. Metallogenic Law and Prospect Direction of Iron Deposits in the East Kunlun Metallogenic Belt in Qinghai[J]. Acta Geologica Sinica, 2012, 86(10):1621-1636.
[2] 王力援,陈国恩,李从辉. 青海省铁矿成因类型的划分及基本特征[J]. 青海国土经略,1986(1):27-44. Wang Liyuan, Chen Guoen, Li Conghui. Classification and Basic Features of Genetic Types of Iron Ore in Qinghai Province[J]. Strategy of Qinghai Land, 1986(1):27-44.
[3] 申勇胜,王旭春,张玉洁. 青海省洪水河铁矿床地质特征及成因初探[J]. 矿产与地质,2009,23(4):308-310. Shen Yongsheng, Wang Xuchun, Zhang Yujie. Study on Genesis and Geological Characteristics of Hongshuihe Iron Deposit in Qinghai Province[J]. Mineral Resources and Geology, 2009, 23(4):308-310.
[4] 张芬英,霍海清,郝丽红,等. 都兰县洪水河铁矿地质特征及成因分析[J]. 黄金科学技术,2009, 17(3):35-39. Zhang Fenying, Huo Haiqing, Hao Lihong, et al. Analysis on Geological Characteristics and Genesis of Hongshuihe Iron Ore in Dulan County[J]. Gold Science and Technology, 2009, 17(3):35-39.
[5] 保守礼,叶积龙,祁俊霞,等. 青海省都兰县洪水河铁矿床成因及找矿远景探讨[J]. 青海大学学报(自然科学版),2010, 28(2):42-46. Bao Shouli, Ye Jilong, Qi Junxia, et al. Investigation on the Hongshuihe Iron Deposit Forming Reason and Ore Searching Prospect in Dulan County of Qinghai Province[J]. Journal of Qinghai University (Nature Science), 2010, 28(2):42-46.
[6] 刘世宝,张爱奎,刘光莲,等. 东昆仑洪水河铁锰矿床特征及发现意义[J].西北地质,2016, 49(1):197-205. Liu Shibao, Zhang Aikui, Liu Guanglian, et al. Geological Characteristics of the Hongshuihe Iron-Manganese Deposit in Eastern Kunlun Metallogenic Belt and Its Discovery Significance[J]. Northwestern Geology, 2016, 49(1):197-205.
[7] 贾启元,吕新彪,廖鹏程,等. 青海洪水河铁矿区千枚岩地球化学特征及成矿意义[J]. 矿物学报,2015(增刊1):868-869. Jia Qiyuan, Lü Xinbiao, Liao Pengcheng, et al. Geochemical Characteristics and Metallogenic Significance of Phyllite in Hongshuihe Iron Ore Area, Qinghai Province[J]. Acta Mineralogica Sinica, 2015(Sup.1):868-869.
[8] 廖鹏程,吕新彪,贾启元,等. 青海省洪水河铁矿床岩石学、地球化学特征及其成因[J]. 矿物岩石地球化学通报, 2016, 35(2):285-294. Liao Pengcheng, Lü Xinbiao, Jia Qiyuan, et al. Petrologic and Geochemical Characteristics of the Hongshuihe Iron Deposit in Qinghai Province:Implication for Ore Genesis[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(2):285-294.
[9] 贾启元,吕新彪,韦晓青,等. 青海洪水河铁矿区硅质岩岩石学、地球化学特征及地质意义[J]. 矿物岩石地球化学通报,2016, 35(5):984-993. Jia Qiyuan, Lü Xinbiao, Wei Xiaoqing, et al. Petrological and Geochemical Characteristics of Cherts in the Hongshuihe Fe Deposit, Qinghai and Their Geological Significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5):984-993.
[10] Hoffman P F, Schrag D P. The Snowball Earth Hypothesis:Testing the Limits of Blobal Change[J]. Terra Nova, 2010, 14(3):129-155.
[11] Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic Snowball Earth[J]. Science, 1998, 281:1342-1346.
[12] Ding Q F, Jiang S Y, Sun F Y. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications[J]. Lithos, 2014, 205(9):266-283.
[13] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[14] Ludwig K R. ISOPLOT 3.0:A Geochronology Toolkit for Microsoft Excel[J]. Berkeley Geochronological Center, Special Publication, 2003, 4:1-70.
[15] Wu Fuyuan, Yang Yueheng, Xie Liewen, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126.
[16] Hou K J, Li Y H, Zou T R, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[17] Söderlund U, Patchett P J, Vervoort J D, et al. The Decay Constant of 176Lu Determined from Lu-Hf and U-Pb Isotope Systematics of Terrestrial Precambrian High-Temperature Mafic Intrusions[J]. Meteoritics & Planetary Science Supplement, 2004, 219(3/4):311-324.
[18] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth & Planetary Science Letters, 2008, 273(1/2):48-57.
[19] Griffin W L, Pearson N J, Belousova E, et al. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
[20] Griffin W L, Wang X, Jackson S E, et al. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos, 2002, 61(3):237-269.
[21] Rudnick R L, Gao S. The Composition of the Con-tinental Crust[J]. Treatise on Geochemistry, 2003, 3:1-64.
[22] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报,2007, 23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Analytical Methods and Geological Applications of LA-MC-ICP-MS Zircon Hf Isotopes[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[23] Niggli P, Parker R L. Rocks and Mineral Deposits[M]. New York:W H Freeman and Company, 1954.
[24] Tarney J. Geochemistry of Archaean High-Grade Gneisses, with Implications as to the Origin and Evolution of the Precambrian Crust[M]. New York:Wiley, 1976:405-417.
[25] Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early Archean Supracrustal Rocks in Southwestern Finland[J]. Bulletin of the Geological Society of Finland, 1953, 160:1-64.
[26] 王仁民. 变质岩原岩图解判别法[M]. 北京:地质出版社,1987. Wang Renmin. Metamorphic Rock Graphic Identification Methods[M]. Beijing:Geological Publishing House, 1987.
[27] Allègre C J, Hart S R. Trace Elements in Igneous Petrology[M]. Amsterdam:Elsevier,1978:1-12.
[28] Roser B P, Korsch R J. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using, Content and Ratio[J]. Journal of Geology, 1986, 94(5):635-650.
[29] Cox R, Lowe D R, Cullers R L. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14):2919-2940.
[30] Girty G H, Ridge D L, Knaack C, et al. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 1996, 66(1):107-118.
[31] Haughton P D W, Todd S P, Morton A C. Sedi-mentary Provenance Studies[J]. Geological Society London Special Publications, 1991, 57(1):1-11.
[32] Wonder J D, Spry P G, Windom K E. Geochemistry and Origin of Manganese Rich Rocks Related to Iron-Formation and Sulfide Deposits, Western Georgia[J]. Economic Geology, 1988, 83(5):1070-1081.
[33] Papike J J, Fowler G W, Shearer C K, et al. Ion Microprobe Investigation of Plagioclase and Orthopyroxene from Lunar Mg-Suite Norites:Implications for Calculating Parental Melt REE Concentrations and for Assessing Postcrystallization REE Redistribution[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3967-3978.
[34] Nesbitt H W, Young G M. Early Proterozoic Cli-mates and Plate Motions Inferred from Major Element Chemistry of Lutites[J]. Nature, 1982, 299:715-717.
[35] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia:Implications for Mineralogical and Provenance Control, and Recycling[J]. Precambrian Research, 2000, 104(1/2):77-93.
[36] 第五春荣,孙勇,袁洪林,等. 河南登封地区嵩山石英岩碎屑锆石U-Pb年代学、Hf同位素组成及其地质意义[J]. 科学通报,2008, 53(16):1923-1934. Diwu Chunrong, Sun Yong, Yuan Honglin, et al. Detrital Zircon U-Pb Geochronology and Hf Isotope of the Quartzite of Songshan in Dengfeng from Henan Province and Their Geological Significance[J]. Chinese Science Bulletin, 2008, 53(16):1923-1934.
[37] 王冠,孙丰月,李碧乐,等. 东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义[J]. 吉林大学学报(地球科学版),2014, 44(3):876-891. Wang Guan, Sun Fengyue, Li Bile, et al. Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3):876-891.
[38] 吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220. Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220.
[39] 李惠民,陆松年,郑健康,等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J].矿物岩石地球化学通报,2001, 20(4):259-262. Li Huimin, Lu Songnian, Zheng Jiankang, et al. Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):259-262.
[40] 莫宣学,罗照华,邓晋福,等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3):403-414. Mo Xuanxue, Luo Zhaohua, Deng Jinfu, et al. East Kunlun Orogenic Belt Granite and Crustal Growth[J]. Geological Journal of China Universities, 2007, 13(3):403-414.
[41] 靳立杰,周汉文,王继林,等. 东昆仑地区纳赤台群碎屑岩段碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J]. 地质通报,2015, 34(10):1848-1859. Jin Lijie, Zhou Hanwen, Wang Jilin, et al. LA-ICP-MS U-Pb Dating of the Detrital Zircons from Clastic Rocks of Naij Tal Group in East Kunlun and Its Geological Implications[J]. Geological Bulletin of China, 2015, 34(10):1848-1859.
[42] 陈能松,李晓彦,张克信,等. 东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示[J]. 地质科技情报,2006, 25(6):1-7. Chen Nengsong, Li Xiaoyan, Zhang Kexin, et al. Lithological Characteristics of the Baishahe Formation to the South of Xiangride Town, Eastern Kunlun Mountains and Its Age Constrained from Zircon Pb-Pb Dating[J]. Geological Science and Technology Information, 2006, 25(6):1-7.
[43] 张建新,孟繁聪,万渝生,等. 柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据[J]. 地质通报,2003, 22(6):397-404. Zhang Jianxin, Meng Fancong, Wan Yusheng, et al. Early Paleozoie Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam:Zircon U-Pb SHRIMP Age Evidence[J]. Geological Bulletin of China, 2003, 22(6):397-404.
[44] Condie K C. Continental Growth During Formation of Rodinia at 1.35-0.9 Ga[J]. Gondwana Research, 2001, 4(1):5-16.
[45] 王国灿,魏启荣,贾春兴,等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报,2007, 26(8):929-937. Wang Guocan, Wei Qirong, Jia Chunxing, et al. Some Understandings About Precambrian Geology in East Kunlun Area[J]. Geological Bulletin of China,2007, 26(8):929-937.
[46] 张海迪. 昆南构造混杂岩带物质组成及其构造变形特征[D]. 北京:中国地质大学, 2012. Zhang Haidi. The Material Composition and Tectonic Deformation Characteristics of the Southern Kunlun Tectonic Melanges[D]. Beijing:China University of Geosciences, 2012.
[47] 王国灿,王青海,简平,等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘,2004, 11(4):481-490. Wang Guocan, Wang Qinghai, Jian Ping, et al. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers, 2004, 11(4):481-490.
[48] 陆松年,李怀坤,王惠初,等. 秦祁昆造山带元古宙副变质岩层碎屑锆石年龄谱研究[J]. 岩石学报,2009, 25(9):2195-2208. Lu Songnian, Li Huaikun, Wang Huichu, et al. Study on the Detrital Zircon Age Spectrum of the Paleozoic Paratoid Strata in the Qin-Qi-Kun Orogenic Belt[J]. Acta Petrologica Sinica, 2009, 25(9):2195-2208.
[49] 陈能松,李晓彦,王新宇,等. 柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMP U-Pb年龄[J]. 地质通报,2006, 25(11):1311-1314. Chen Nengsong, Li Xiaoyan, Wang Xinyu, et al. Zircon SHRIMP U-Pb Age of Neoproterozoic Metagranite in the North Kunlun Unit on the Southern Margin of the Qaidam Block in China[J]. Geological Bulletin of China, 2006, 25(11):1311-1314.
[50] 陈有炘,裴先治,李瑞保,等. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄[J]. 现代地质,2011, 25(3):510-521. Chen Youxin, Pei Xianzhi, Li Ruibao, et al. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt[J]. Geoscience, 2011, 25(3):510-521.
[51] 青海省地质矿产局.青海省区域地质志[M]. 北京:地质出版社,1991:1-662. Qinghai Provincial Bureau of Geology and Mineral Resources. Regional Geology in Qinghai Province[M]. Beijing:Geological Publishing House, 1991:1-662.
[52] 王秉璋,祁生胜,朱迎堂,等. 苦海赛什塘地区古元古代变质基性岩墙群的地质特征及意义[J]. 青海国土经略,1999(1):6-11. Wang Bingzhang, Qi Shengsheng, Zhu Yingtang, et al. Geological Features of the Paleoproterozoic Meta-Basic Dike Swarms in Kuhai-Saishitang Region and Its Significance[J]. Strategy of Qinghai Land, 1999(1):6-11.
[53] 阿成业,王毅智,任晋祁,等. 东昆仑地区万宝沟群的解体及早寒武世地层的新发现[J]. 中国地质,2003, 30(2):199-206. A Chengye, Wang Yizhi, Ren Jinqi, et al. Disintegration of the Wanbangou Group and Discovery of Early Cambrian Strata in the East Kunlun Area[J]. Geology in China, 2003, 30(2):199-206.
[54] 朱云海,Pan Yuanming,张克信. 东昆仑造山带东段晋宁期岩浆活动及其演化[J]. 地球科学, 2000, 25(3):231, 266. Zhu Yunhai, Pan Yuanming, Zhang Kexin. Magmatic Activities and Evolution of Jinning Period in the Eastern Segment of East Kunlun Orogenic Belt[J]. Earth Science, 2000, 25(3):231, 266.
[55] Haskin L A. Petrogenetic Modelling-Use of Rare Earth Elements[C]//Henderson P. Rare Earth Element Geo-Chemistry. New York:Elsevier, 1984:115-150.
[56] Gao S, Wedepohl K H. The Negative Eu Anomaly in Archean Sedimentary Rocks:Implications for Decomposition, Age and Importance of Their Granitic Sources[J]. Earth & Planetary Science Letters, 1995, 133(1/2):81-94.
[57] Murray R W, Buchholtz T B M R, Jones D L, et al. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale[J]. Geology, 1990, 18(3):268.
[58] 张亚峰,裴先治,丁仨平,等. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质通报,2010, 29(1):79-85. Zhang Yafeng, Pei Xianzhi, Ding Saping,et al. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance[J]. Geological Bulletin of China, 2010, 29(1):79-85.
[59] 罗明非,莫宣学,喻学惠,等. 东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义[J]. 地学前缘,2015, 22(5):182-195. Luo Mingfei, Mo Xuanxue, Yu Xuehui, et al. Zircon U-Pb Geochronology, Petrogenesis and Implication of the Later Permian Granodiorite from the Wulonggou Area in East Kunlun,Qinghai Province[J]. Earth Science Frontiers, 2015, 22(5):182-195.
[60] 张斌,孔会磊,李智明,等. 东昆仑哈日扎铅锌多金属矿区英云闪长岩锆石U-Pb定年、地球化学及其地质意义[J]. 地质科技情报,2016,35(5):9-17. Zhang Bin, Kong Huilei, Li Zhiming, et al. Zircon U-Pb Dating, Geochemical and Geological Significance of the Tonalites from the Harizha Lead-Zinc Polymetallic Mine in East Kunlun Mountains[J]. Geological Science and Technology Information, 2016,35(5):9-17.
[61] 李金超,杜玮,孔会磊,等. 青海省东昆仑大水沟金矿英云闪长岩锆石U-Pb测年、岩石地球化学及其找矿意义[J]. 中国地质,2015, 42(3):509-520. Li Jinchao, Du Wei, Kong Huilei, et al. Zircon U-Pb Dating and Geochemical Characteristics of the Tonalite in the Dashuigou Gold Deposit of Eastern Kunlun Mountains, Qinghai Province[J]. Geology in China, 2015, 42(3):509-520.
[62] Lei Ruxiong, Wu Changzhi, Li Guangrong. Neopro-terozoic Banded Iron Formation in the Central Tianshan, NW China:The Shalong Example[J]. Acta Geologica Sinica(English Edition), 2016, 90(4):1543-1544.
[1] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[4] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[5] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[6] 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131.
[7] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[8] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[9] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[10] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[11] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[12] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[13] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
[14] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[15] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587 -625 .
[2] 宋明春, 李杰, 李世勇, 丁正江, 谭现锋, 张照录, 王世进. 鲁东晚中生代热隆-伸展构造及其动力学背景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 941 -964 .
[3] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965 -980 .
[4] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981 -990 .
[5] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991 -1007 .
[6] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008 -1017 .
[7] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018 -1029 .
[8] 龚跃华, 杨胜雄, 王宏斌, 梁金强, 梁劲. 琼东南盆地天然气水合物成矿远景[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1030 -1042 .
[9] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043 -1049 .
[10] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050 -1070 .