吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 548-558.doi: 10.13278/j.cnki.jjuese.20170224

• 地质工程与环境工程 • 上一篇    下一篇

西藏搭格架高温热泉中砷的地球化学异常及其存在形态

严克涛, 郭清海, 刘明亮   

  1. 中国地质大学(武汉)生物地质与环境地质国家重点实验室/环境学院, 武汉 430074
  • 收稿日期:2017-09-05 出版日期:2019-03-26 发布日期:2019-03-28
  • 通讯作者: 郭清海(1978-)男,教授,博士生导师,主要从事高温地热流体地球化学领域的研究工作,E-mail:qhguo2006@gmail.com E-mail:qhguo2006@gmail.com
  • 作者简介:严克涛(1992-)男,博士研究生,主要从事高温地热流体地球化学领域的研究工作,E-mail:904188340@qq.com
  • 基金资助:
    国家自然科学基金项目(41572335,41772370)

Geochemical Anomalies of Arsenic and Its Speciation in Daggyai Geothermal Springs, Tibet

Yan Ketao, Guo Qinghai, Liu Mingliang   

  1. State Key Laboratory of Biogeology and Environmental Geology/School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
  • Received:2017-09-05 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Natural Science Foundation of China(41572335,41772370)

摘要: 西藏搭格架高温热泉是我国大陆少有的大型间歇性喷泉,砷元素作为对人类威胁极大的环境问题普遍存在于热泉之中,搭格架高温热泉中砷元素质量浓度最高已达到了9.75 mg/L,其对地表水和浅层地下水的污染不容忽视。硫代砷是富含硫化物热泉中砷的存在形态之一,鉴于国内相关研究较少,本文对西藏搭格架地热区的热泉样品进行了水化学分析,并利用水文地球化学模拟软件PHREEQC开展了对热泉中砷元素存在形态的地球化学模拟。结果表明:西藏搭格架热泉中砷元素的存在形态有亚砷酸盐、砷酸盐和硫代砷,其中亚砷酸盐与砷酸盐是砷的主要存在形态,且在pH影响下两者之间存在相互转化关系;各种硫代砷按质量浓度由高至低依次为一硫代砷酸盐、三硫代砷酸盐、二硫代砷酸盐、一硫代亚砷酸盐、四硫代砷酸盐;硫代砷形态占总砷浓度比例主要受热泉中硫化物质量浓度、Eh(氧化还原电位)和pH等因素的控制,在硫化物质量浓度总体偏低的情况下,硫化物质量浓度的上升可促进其他形态的砷向硫代砷形态转化,强还原性环境有利于硫代砷形态的存在;此外,在中性环境下,硫代砷占总砷浓度比例随pH上升亦有上升趋势。

关键词: 热泉, 硫代砷, 搭格架热田, 地球化学

Abstract: Daggyai geothermal system in Tibet includes the biggest geyser in mainland China. Arsenic, as one of the most harmful substances, commonly exists in geothermal water, and the highest arsenic concentration detected in Daggyai geothermal springs reaches 9.75 mg/L, unneglectable potential arsenic pollution in shallow groundwater and rivers should be noticed. Thioarsenic usually exists as the dominant species of arsenic in sulfide-rich thermal springs;however there are few related studies in China. We focused on Daggyai geothermal system, and analyzed the chemical components of the geothermal spring samples. Thioarsenic species in each sample were calculated by using the hydro-geothermal simulation software PHREEQC. The results are as follows:Arsenic in Daggyai geothermal water consists of arsenate, arsenite, and thioarsenic, among which the arsenate and arsenite are the main species. There are interchanges between arsenate and arsenite when pH changes. The descending order of thioarsenic species in terms of their average ratio is monothioarsenate, trithioarsenate, ditthioarsenate, monothioarsenite and tetrathioarsenate. The proportion of thioarsenic to total arsenic concentration is mainly controlled by sulfide concentration, pH and Eh in geothermal water. High concentration of sulfide can promote the process of arsenic changing into thioarsenic, and strong reducing environment is required for the existence of thioarsenic. Moreover, the percentage of thioarsenic seems to have a positive correlation with pH value.

Key words: geothermal spring, thioarsenic, Daggyai geothermal system, geochemistry

中图分类号: 

  • X142
[1] 孙贵范.我国地方性砷中毒研究进展[J].环境与健康杂志,2009,26(12):1035-1036. Sun Guifan. Research Progress of Endemic Arsenism in China[J]. Journal of Environment and Health,2009,26(12):1035-1036.
[2] Craigmile P F,Calder C A,Li H,et al.Hierarchical Model Building,Fitting,and Checking:A Behind-the-Scenes Look at a Bayesian Analysis of Arsenic Exposure Pathways[J]. Bayesian Analysis,2009,4(1):1-35.
[3] Figueira R,Sérgio C,Lopes J L,et al.Detection of Exposition Risk to Arsenic in Portugal Assessed by Air Deposition in Biomonitors and Water Contamination[J]. Int J Hyg Environ Health,2007,210(3/4):393-397.
[4] Whanger P D,Weswig P H,Stoner J C.Arsenic Levels in Oregon Waters[J]. Environ Health Perspect,1977,19:139-143.
[5] Subramanian K S,Kosnett M J.Human Exposures to Arsenic from Consumption of Well Water in West Bengal,India[J]. Int J Occup Environ Health,1998,4(4):217-230.
[6] Anawar H M.Arsenic Poisoning in Groundwater:Health Risk and Geochemical Sources in Bangladesh[J].Environment International,2002,27(7):597-604.
[7] Das D,Chatterjee A,Mandal B K,et al.Arsenic in Ground Water in Six Districts of West Bengal,India:The Biggest Arsenic Calamity in The World:Part 2:Arsenic Concentration in Drinking Water,Hair,Nails,Urine,Skin-Scale and Liver Tissue (Biopsy) of the Affected People[J].Analyst,1995,120(3):917-24.
[8] 金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查:总报告[J].卫生研究,2003,32(6):519-540. Jin Yinlong,Liang Chaoke,He Gongli,et al. Study on Distribution of Endemic Arsenism in China[J]. Journal of Hygiene Research,2003,32(6):519-540.
[9] 卞建民,查恩爽,汤洁,等.吉林西部砷中毒区高砷地下水反向地球化学模拟[J].吉林大学学报(地球科学版),2010,40(5):1098-1103. Bian Jianmin,Cha Enshuang,Tang Jie,et al.Inverse Geochemical Modeling of Arsenic Groundwater at Arseniasis Area in the Western of Jilin Province[J].Journal of Jilin University (Earth Science Edition),2010,40(5):1098-1103.
[10] 赵娟,李育松,卞建民,等.吉林西部地区高砷地下水砷的阈值分析及风险评价[J].吉林大学学报(地球科学版),2013,43(1):251-258. Zhao Juan,Li Yusong,Bian Jianmin,et al. Threshold Analysis and Health Risk Assessment of Arsenic in Groundwater in Western Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2013,43(1):251-258.
[11] Cortecci G,Boschetti T,Mussi M,et al.New Chemical and Original Isotopic Data on Waters from El Tatio Geothermal Field,Northern Chile[J].Geochemical Journal,2015,39(6):547-571.
[12] Khorasanipour M,Esmaeilzadeh E.Geogenic Arsenic Contamination in the Kerman Cenozoic Magmatic Arc,Kerman,Iran:Implications for the Source Identification and Regional Analysis[J].Applied Geochemistry,2015,63:610-622.
[13] Birkle P,Bundschuh J,Sracek O,et al. Mechanisms of Arsenic Enrichment in Geothermal and Petroleum Reservoirs Fluids in Mexico[J].Water Research,2010,44(19):5605-5617.
[14] Arnold Y P,Cabassi J,Tassi F,et al.Fluid Geochemistry of a Deep-Seated Geothermal Resource in The Puna Plateau (Jujuy Province,Argentina)[J].Journal of Volcanology & Geothermal Research,2017,338:121-134.
[15] Kaasalainen H,Stefánsson A. The Chemistry of Trace Elements in Surface Geothermal Waters and Steam,Iceland[J]. Chemical Geology,2012,330/331:60-85.
[16] Smedley P L,Kinniburgh D G.A Review of the Source,Behaviour and Distribution of Arsenic in Natural Waters[J].Applied Geochemistry,2002,17(5):517-568.
[17] 丁爱中,杨双喜,张宏达.地下水砷污染分析[J].吉林大学学报(地球科学版),2007,37(2):319-325. Ding Aizhong,Yang Shuangxi,Zhang Hongda.Analysis of Groundwater Arsenic Pollution[J]. Journal of Jilin University (Earth Science Edition),2007,37(2):319-325.
[18] Bostick B C,Fendorf S,Brown G E. In Situ Analysis of Thioarsenite Complexes in Neutral to Alkaline Arsenic Sulphide Solutions[J].Mineralogical Magazine,2005,69(5):781-795.
[19] Helz G R,Tossell J A.Thermodynamic Model for Arsenic Speciation in Sulfidic Waters:A Novel Use of Ab Initio,Computations[J].Geochimica Et Cosmochimica Acta,2008,72(18):4457-4468.
[20] Parkhurst D L.User's guide to PHREEQC:Version 2:A Computer Program for Speciation,Batch-Reaction,One-Dimensional Transport,and Inverse Geochemical Calculations[R].Water Resources Investigations Report,1999:99-4259.
[21] Zakaznova-Herzog V P,Seward T M.A Spectrophotometric Study of the Formation and Deprotonation of Thioarsenite Species in Aqueous Solution at 22℃[J].Geochimica Et Cosmochimica Acta,2012,83(1):48-60.
[22] Thilo E,Hertzog K,Winkler A.Vber Vorgänge bei der Bildung des Arsen(V)-Sulfids Beim Ansäuern von Tetrathioarsenatlösungen[J].Zeitschrift Für Anorganische Und Allgemeine Chemie,1970,373(2):111-121.
[23] Guo Q,Planer-Friedrich B,Liu M,et al.Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System,Tengchong Volcanic Region,China[J]. Chemical Geology,2017,453:12-20.
[24] 郭清海,刘明亮,李洁祥.腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J].地球科学,2017,42(2):286-297. Guo Qinghai,Liu Mingliang,Li Jiexiang.Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses[J]. Earth Science,2017,42(2):286-297.
[25] 庄亚芹,郭清海,刘明亮,等.高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟:以云南腾冲热海水热区为例[J].地球科学,2016,41(9):1499-1510. Zhuang Yaqin,Guo Qinghai,Liu Mingliang,et al.Geochemical Simulation of Thioarsenic Speciation in Hgh-Temperature,Sulfide-Rich Hot Springs:A Case Study in the Rehai Hydrothermal Area,Tengchong,Yunnan[J]. Earth Science,2016,41(9):1499-1510.
[26] 朱弟成,莫宣学,赵志丹,等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,16(2):1-20. Zhu Dicheng,Mo Xuanxue,Zhao Zhidan,et al.Permian and Early Cretaceousc Tectonomagmatism in Southern Tibet and Tethjy and Evolution:New Perspective[J]. Earth Science Frontier,2009,16(2):1-20.
[27] 郑绵平,王秋霞,多吉.水热成矿新类型西藏铯硅华矿床[M].北京:地质出版,1995. Zheng Mianping,Wang Qiuxia,Duo Ji. New Types of Hydrothermal Mineralization,Tibet Cesium Silicate Deposit[M].Beijing:Geological Publishing House,1995.
[28] 赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地质特征及形成时代[J].矿床地质,2006,25(3):281-291. Zhao Yuanyi,Nie Fengjun,Hou Zengqian,et al.Geological Characteristics and Formation Age of Hot Spring Cesium Deposit Area,Tibet[J].Mineral Deposits,2006,25(3):281-291.
[29] 赵元艺,聂凤军,侯增谦,等.西藏搭格架热泉型铯矿床地球化学[J].矿床地质,2007,26(2):163-174. Zhao Yuanyi,Nie Fengjun,Hou Zengqian,et al.Geochemistry of Targejia Hot Spring Type Cesium Deposit in Tibet[J]. Mineral Deposits,2007,26(2):163-174.
[30] 沈立成,伍坤宇,肖琼,等.西藏地热异常区CO2脱气研究:以朗久和搭格架地热区为例[J].科学通报,2011,56(26):2198-2208. Shen Licheng,Wu Kunyu,Xiao Qiong,et al.Carbon Dioxide Degassing Flux from Two Geothermal Fields in Tibet,China[J].Chinese Science Bulletin,2011,56(26):2198-2208.
[1] 张治波, 朱志军, 王文锋, 徐颖, 李丽荣. 滇西兰坪盆地中-新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2019, 49(2): 356-379.
[2] 吴永涛, 韩润生. 滇东北矿集区茂租铅锌矿床地球化学特征[J]. 吉林大学学报(地球科学版), 2019, 49(2): 400-413.
[3] 付焱鑫, 谭思哲, 侯凯文. 南黄海盆地北凹泰州组烃源岩形成条件及资源潜力分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 230-239.
[4] 梅西, 张训华, 刘健, 王中波, 郭兴伟, 黄湘通. 南黄海3.50 Ma以来海陆环境演变的元素地球化学记录[J]. 吉林大学学报(地球科学版), 2019, 49(1): 74-84.
[5] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
[6] 殷征欣, 王海峰, 韩金生, 吕修亚, 沈泽中, 陈静, 贺惠忠, 谢安远, 关瑶, 董超. 南海边缘海多金属结核与大洋多金属结核对比[J]. 吉林大学学报(地球科学版), 2019, 49(1): 261-277.
[7] 吕骏超, 舒广龙, 张德宝, 赵岩, 刘桂香, 毕中伟. 内蒙古扎赉特旗神山铁铜矿床成岩成矿年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1683-1695.
[8] 杨帆, 汪岩, 那幅超, 付俊彧, 张广宇, 孙巍, 庞雪娇, 陈井胜, 刘淼, 李斌. 内蒙古白音诺尔铅锌矿床成矿时代及其地质意义——来自侵入岩地球化学及年代学的制约[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1696-1710.
[9] 史冀忠, 卢进才, 魏建设, 牛亚卓, 韩小锋, 张宇轩. 内蒙古阿拉善右旗雅干地区二叠系埋汗哈达组硅质岩成因及其沉积环境[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1711-1724.
[10] 高福红, 何雨思, 王枫, 修铭. 黑龙江省东部早古生代晨明组物源区特征及其构造背景[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1725-1740.
[11] 尹志刚, 李海娜, 张海, 郝科, 庞学昌, 宫兆民, 李敏, 张圣听. 大兴安岭加格达奇东北部花岗岩类形成时代、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1741-1755.
[12] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[13] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[14] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[15] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!