吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 959-969.doi: 10.13278/j.cnki.jjuese.20180024

• 地质与资源 • 上一篇    下一篇

紫金山地区煤系致密砂岩储层特征及主控因素

孙泽飞1,2, 史建儒1, 连碧鹏2, 康志帅1, 申建3, 杨函1,2   

  1. 1. 山西省地质矿产科技评审中心, 太原 030024;
    2. 山西省自然资源厅油气资源开发管理处, 太原 030024;
    3. 煤层气资源与成藏过程教育部重点实验室(中国矿业大学), 江苏 徐州 221008
  • 收稿日期:2018-05-16 出版日期:2019-07-26 发布日期:2019-07-26
  • 通讯作者: 史建儒(1967-),男,教授级高级工程师,主要从事矿产勘查地质方面的研究,E-mail:sxsgttyqc@163.com E-mail:sxsgttyqc@163.com
  • 作者简介:孙泽飞(1990-),男,硕士研究生,工程师,主要从事煤层气地质方面的研究,E-mail:sunzefei008@163.com
  • 基金资助:
    国家科技重大专项项目(2011ZX0503-01-02);国家自然科学基金项目(U1361207)

Reservoir Characteristics and Main Controlling Factors of Tight Sandstone in Coal Measures in Zijinshan Area

Sun Zefei1,2, Shi Jianru1, Lian Bipeng2, Kang Zhishuai1, Shen Jian3, Yang Han1,2   

  1. 1. Shanxi Geology and Mineral Resources of Science and Technology Evaluation Center, Taiyuan 030024, China;
    2. Oil and Gas Resources Development and Management Department, Department of Natural Resources of Shanxi Province, Taiyuan 030024, China;
    3. Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process(China University of Mining & Technology), Ministry of Education, Xuzhou 221008, Jiangsu, China
  • Received:2018-05-16 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported byNational Science and Technology Major Project (2011ZX0503-01-02) and National Natural Science Foundation of China (U1361207)

摘要: 鄂尔多斯盆地东北缘紫金山地区上古生界煤系致密砂岩气资源潜力大,是我国当前非常规天然气勘探的重要地区之一。通过铸体薄片、扫描电镜、孔渗测试和压汞实验等分析测试,结合钻井和测井资料,分析了致密储层的岩石学、孔隙、物性和含气性特征。结果表明:紫金山地区煤系砂岩储层以岩屑砂岩为主,石英和岩屑体积分数高,长石体积分数低,成分成熟度和结构成熟度中等;孔隙类型以溶蚀孔为主,孔隙结构以中孔细喉和小孔细喉为主;孔隙度主要分布在2.00%~12.00%之间,平均6.96%;渗透率主要为0.01×10-3~1.00×10-3 μm2,平均为0.36×10-3 μm2,孔渗相关性较好,与后期溶蚀作用有关;含气储层平均厚度为10.3 m,占砂岩储层总厚度的29%,含气饱和度为40.4%。储层发育主要受沉积作用、压实作用和溶蚀作用控制,沉积作用控制了储层形成的物质基础和空间展布,不同环境下沉积的岩石成分直接影响了压实作用的强弱,砂岩、泥岩、煤层叠置发育的特征为溶蚀作用奠定了基础;压实作用是造成储层致密的最主要因素;溶蚀作用是区内储层物性改善的决定性因素;紫金山岩浆热作用和喷发作用进一步加强了溶蚀作用。

关键词: 致密砂岩, 储层, 主控因素, 太原组, 山西组, 紫金山, 鄂尔多斯盆地

Abstract: The Upper Paleozoic tight sandstone gas resources are rich in potential in Zijinshan area at the northeast margin of Ordos basin,and are one of the important blocks for unconventional natural gas exploration in China. The petrology, physical properties and gas-bearing characteristics of tight reservoirs were studied through analysis and test of casting thin sections, scanning electron microscope, experiments on porosity,permeability,and pressured-mercury testing,combined with drilling and logging data. The results show that lithic sandstone is the main reservoir rock type at medium degree of composition maturity and textural maturity with high content of quartz,lithic fragment,and low content of feldspar. The dissolved pore is the major type of reservoir space,and its main pore structure is mesoporous fine throat and microporous fine throat. The porosity of the major pores ranges from 2.00% to 12.00%, with an average of 6.96%,and the main permeability is 0.01×10-3 μm2-1.00×10-3 μm2, with an average of 0.36×10-3 μm2. The correlation of porosity and permeability is good because of the later dissolution. The average thickness of the gas reservoirs with gas saturation of 40.4% is 10.3 m, which accounts for 29% of the tight sandstone reservoirs. The reservoir development is mainly under the control of sedimentation, compaction and dissolution. The material basis and spatial distribution of reservoir formation are controlled by sedimentation. The strength of compaction is directly affected by rock composition in different sedimentary environments. The superimposed development characteristics of sandstone, mudstone, limestone,and coal seam provide a basis for dissolution. Compaction is the main factor that causes reservoir tightness. Dissolution is the decisive factor for the improvement of reservoir properties in the region. The thermal action and eruption of Zijinshan magma enhanced the dissolution.

Key words: tight sandstone, reservoir, main controlling factors, Taiyuan Formation, Shanxi Formation, Zijinshan, Ordos basin

中图分类号: 

  • P618.13
[1] Holditch S A. TightGas Sands[J]. Journal of Petroleum Technology, 2006, 58(6):86-93.
[2] Higgs K E, Zwingmann H, Reyes A G. Diagenesis,Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research, 2007, 77(12):1003-1025.
[3] Smith T, Sayers C M, Liner C. Introduction to this Special Section:Tight Gas Sands[J]. Leading Edge, 2010, 29(12):1463-1463.
[4] 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3):257-264. Dai Jinxing, Ni Yunyan, Wu Xiaoqi. Tight Gas in China and Its Significance in Exploration and Exploitation[J]. Petroleum Exploration & Development, 2012, 39(3):257-264.
[5] 关德师. 中国非常规油气地质[M]. 北京:石油工业出版社, 1995. Guan Deshi. Unconventional Geology of China[M]. Beijing:Petroleum Industry Press, 1995.
[6] 李剑, 魏国齐, 谢增业, 等. 中国致密砂岩大气田成藏机理与主控因素:以鄂尔多斯盆地和四川盆地为例[J]. 石油学报, 2013, 34(增刊1):14-28. Li Jian, Wei Guoqi, Xie Zengye, et al. Accumulation Mechanism and Main Controlling Factors of Large Tight Sandstone Gas Fields in China:Cases Study on Ordos Basin and Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(Sup.1):14-28.
[7] 邹才能, 陶士振, 张响响, 等. 中国低孔渗大气区地质特征、控制因素和成藏机制[J]. 中国科学:D辑:地球科学, 2009, 39(11):1607-1624. Zou Caineng, Tao Shizhen, Zhang Xiangxiang, et al. Geologic Characteristics, Controlling Factors and Hydrocarbon Accumulation Mechanisms of China's Large Gas Provinces of Low Porosity and Permeability[J]. Science China:Series D:Earth Science, 2009, 39(11):1607-1624.
[8] 张金亮, 常象春. 四川盆地上三叠统深盆气藏研究[J]. 石油学报, 2002, 23(3):29-33. Zhang Jinliang, Chang Xiangchun. Gas Trap in Deep Basin of the Upper Triassic in Sichuan Basin[J]. Acta Petrolei Sinica, 2002, 23(3):29-33.
[9] 蔡来星, 卢双舫, 肖国林, 等. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1):15-28. Cai Laixing, Lu Shuangfang, Xiao Guolin, et al. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs:Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1):15-28.
[10] 赵靖舟, 付金华, 姚泾利, 等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J]. 石油学报, 2012, 33(1):37-52. Zhao Jingzhou, Fu Jinhua, Yao Jingli, et al. Quasi-Continuous Accumulation Model of Large Tight Sandstone Gas Field in Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(1):37-52.
[11] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
[12] 刘鹏, 王伟锋, 孟蕾, 等. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3):692-701. Liu Peng, Wang Weifeng, Meng Lei, et al. Joint Optimization of Coal-Bed Methane and Tight Gas in the Upper Paleozoic of the Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3):692-701.
[13] 张水昌, 米敬奎, 刘柳红, 等. 中国致密砂岩煤成气藏地质特征及成藏过程:以鄂尔多斯盆地上古生界与四川盆地须家河组气藏为例[J]. 石油勘探与开发, 2009, 36(3):320-330. Zhang Shuichang, Mi Jingkui, Liu Liuhong, et al. Geological Features and Formation of Coal-Formed Tight Sandstone Gas Pools in China:Cases from Upper Paleozoic Gas Pools, Ordos Basin and Xujiahe Formation Gas Pools, Sichuan Basin[J]. Petroleum Exploration & Development, 2009, 36(3):320-330.
[14] 于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1):1-13. Yu Xinghe, Li Shunli, Yang Zhihao. Discussion on Deposition-Diagenesis Genetic Mechanism and Hot Issues of Tight Sandstone Gas Reservoir[J]. Lithologic Reservoirs, 2015, 27(1):1-13.
[15] 李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4):607-615. Li Jianzhong, Guo Bincheng, Zheng Min, et al. Main Types, Geological Features and Resource Potential of Tight Sandstone Gas in China[J]. Natural Gas Geoscience, 2012, 23(4):607-615.
[16] 樊爱萍, 赵娟, 杨仁超, 等. 苏里格气田东二区山1段、盒8段储层孔隙结构特征[J]. 天然气地球科学, 2011, 22(3):482-487. Fan Aiping, Zhao Juan, Yang Renchao, et al. Pore Structure of Reservoir Rocks in Shan 1 and He 8 Members, the EastⅡ Block of Sulige Gas Field[J]. Natural Gas Geoscience, 2011, 22(3):482-487.
[17] 卢蜀秀, 阎荣辉, 袁晓明. 苏里格气田南部地区盒8段气藏储层特征及主控因素研究[J]. 天然气勘探与开发, 2012, 35(3):1-4. Lu Shuxiu, Yan Ronghui, Yuan Xiaoming. Reservoir Characteristics and Main Controlling Factors of He 8 Member, Southern Sulige Gasfield[J].Natural Gas Exploration & Development, 2012, 35(3):1-4.
[18] 朱如凯, 邹才能, 张鼐, 等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学:D辑:地球科学, 2009, 39(3):327-339. Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic Fluids Evolution and Genetic Mechanism of Tight Sandstone Gas Reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China:Series D:Earth Science, 2009, 39(3):327-339.
[19] 杨华, 刘新社, 闫小雄. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏[J]. 地学前缘, 2015, 22(3):174-183. Yang Hua, Liu Xinshe, Yan Xiaoxiong. The Relationship Between Tectonic-Sedimentary Evolution and Tight Sandstone Gas Reservoir Since the Late Paleozoic in Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3):174-183.
[20] 林春明, 张霞, 周健,等. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2):212-223. Lin Chunming, Zhang Xia, Zhou Jian, et al. Diagenesis Characteristics of the Reservoir Sandstones in Lower Shihezi Formation from Daniudi Gas Field,Ordos Basin[J]. Advances in Earth Science, 2011, 26(2):212-223.
[21] 林小兵, 刘莉萍, 田景春, 等. 川西坳陷中部须家河组五段致密砂岩储层特征及主控因素[J]. 石油与天然气地质, 2014, 35(2):224-230. Lin Xiaobing, Liu Liping, Tian Jingchun, et al. Characteristics and Controlling Factors of Tight Sandstone Reservoirs in the 5th Member of Xujiahe Formation in the Central of Western Sichuan Depression[J]. Oil & Gas Geology, 2014, 35(2):224-230.
[22] 长庆油田石油地质志编写组. 中国石油地质志:十二[M]. 北京:石油工业出版社, 1992:68. Editorial Committee of Petroleum Geology of Changqing Oil Field. Petroleum Geology of China:Volume 12[M]. Beijing:Petroleum Industry Press, 1992:68.
[23] 王琳琳, 姜波, 屈争辉. 鄂尔多斯盆地东缘煤层含气量的构造控制作用[J]. 煤田地质与勘探, 2013, 41(1):14-19. Wang Linlin, Jiang Bo, Qu Zhenghui. Structural Control on Gas Content Distribution in Eastern Margin of Ordos Basin[J]. Coal Geology & Exploration, 2013, 41(1):14-19.
[24] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6):1-6. Jie Mingxun.Prospects in Coalbed Methane Gas Exploration and Production in the Eastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(6):1-6.
[1] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[2] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[3] 张斌, 顾国忠, 单俊峰, 王璞珺, 郭强, 徐琛琛, 杨帆, 陈星州. 辽河东部凹陷新生界火成岩岩性、岩相特征和储层控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(2): 279-293.
[4] 李欢, 王清斌, 庞小军, 冯冲, 刘晓健. 渤海湾盆地辽东凹陷旅大29构造沙二段近源砂砾岩体优质储层形成机理[J]. 吉林大学学报(地球科学版), 2019, 49(2): 294-309.
[5] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[6] 蔡来星, 肖国林, 郭兴伟, 王蛟, 吴志强, 李宝刚. 由下扬子区海陆对比分析南黄海盆地下志留统烃源岩特征及其主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 39-52.
[7] 卢丽娟, 蔡周荣, 黄强太, 姚永坚, 刘海龄. 南海及邻区新构造运动表现特征及其主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 206-217.
[8] 朱毅秀, 单俊峰, 王欢, 蔡国刚. 辽河大民屯凹陷中央构造带太古宇变质岩储层岩性特征分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1304-1315.
[9] 徐守余, 路研, 王亚. 基于支持向量机的浊积扇低渗透储层流动单元研究[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1330-1341.
[10] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[11] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[12] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[13] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[14] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[15] 刘海, 林承焰, 张宪国, 王宏伟, 付晓亮, 李佳. 孔店油田馆陶组辫状河储层构型及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2018, 48(3): 665-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!