吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1578-1590.doi: 10.13278/j.cnki.jjuese.20180209

• 地质与资源 • 上一篇    下一篇

北阿尔金地区大平沟金矿H-O-S-Pb同位素地球化学特征对金矿成因的启示

雷如雄1, 赵同阳2, 李平2, 董连慧2, 李基宏3, 吴昌志4   

  1. 1. 长安大学地球科学与资源学院, 西安 710054;
    2. 新疆维吾尔自治区地质矿产勘查开发局, 乌鲁木齐 830000;
    3. 中国地质调查局南京地质调查中心, 南京 210016;
    4. 南京大学地球科学与工程学院, 南京 210093
  • 收稿日期:2018-08-07 发布日期:2019-11-30
  • 作者简介:雷如雄(1987-),男,副教授,博士,主要从事矿床学方面的研究,E-mail:ruxionglei@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC0601203);中国地质调查局项目(1212011140056);中央高校基本科研业务费专项资金(300102278102)

H-O-S-Pb Isotopic Geochemistry of Dapinggou Gold Deposit in Northern Altun and Its Implications for Ore Genesis

Lei Ruxiong1, Zhao Tongyang2, Li Ping2, Dong Lianhui2, Li Jihong3, Wu Changzhi4   

  1. 1. College of Earth Science and Resources, Chang'an University, Xi'an 710054, China;
    2. Xinjiang Bureau of Geology and Mineral Resources, Urumqi 830000, China;
    3. Nanjing Center, China Geological Survey, Nanjing 210016, China;
    4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
  • Received:2018-08-07 Published:2019-11-30
  • Supported by:
    Supported by National Key R & D Program of China (2017YFC0601203), Project of China Geological Survey (1212011140056) and Fundamental Research Funds for the Central Universities (300102278102)

摘要: 大平沟金矿床是北阿尔金地区典型金矿床之一,矿化类型以钾长石-石英脉型和蚀变岩型为主,矿体赋存于近东西向韧性剪切带中,围岩为太古宇米兰岩群钾长变粒岩。矿石矿物以黄铁矿为主,另有少量褐铁矿和自然金等。大平沟金矿床含金石英脉中石英的δ18OVSMOW值为12.4‰~15.3‰,估算的流体δ18OH2O值介于7.4‰~10.3‰之间,石英中流体包裹体的氢同位素为-97‰~-66‰,表明成矿流体以变质流体来源为主;含金石英脉中硫化物的δ34SVCDT值为6.9‰~8.3‰,主要为壳源硫,与典型造山型金矿的硫值一致;硫化物的206Pb/204Pb值为18.310 1~19.373 9,207Pb/204Pb值为15.587 2~15.654 1,而208Pb/204Pb值为38.119 1~39.143 9,反映硫化物的铅来源具有造山带铅特征。综合分析认为,大平沟金矿床属于造山型金矿,其形成受近东西向次级断裂和韧性剪切带控制,成矿流体以变质流体为主,成矿物质来源于太古宙深变质岩。

关键词: 同位素地球化学, 造山型金矿, 大平沟金矿床, 北阿尔金

Abstract: Dapinggou gold deposit is one of the typical gold deposits in Northern Altun. The deposit is characterized by K-feldspar quartz vein-type and altered rock-type mineralization. The gold mineralization occurs within near the E-W ductile shear zone with the K-feldspar leptynite of Archaean Milan Group as the principal host rock. The ore minerals are mainly pyrite, with minor limonite and natural gold. The measured δ18OVSMOW values for the gold-bearing quartz range from 12.4‰ to 15.3‰, the estimated δ18OH2O fluid values range from 7.4‰ to 10.3‰, and the δDVSMOW values of fluid inclusions in quartz range from-97‰ to -66‰, indicating that the ore-forming fluid is dominated by metamorphic sources. The δ34SVCDT values of sulfide minerals range from 6.9‰ to 8.3‰ in accordance with those of the typical orogenic gold deposits. The 206Pb/204Pb ratios of sulfides range from 18.310 1 to 19.373 9, 207Pb/204Pb ratios from 15.587 2 to 15.654 1, and the 208Pb/204Pb ratios from 38.119 1 to 39.143 9, indicating the lead source of sulfide the same as the orogenic type. It is proposed that Dapinggou gold deposit can be classified as the orogenic gold deposit, the gold formation is controlled by the near EW secondary fault and the ductile shear zone, the metallogenic material is derived from the Archaean metamorphic rocks, and the ore-forming fluids are mainly metamorphic fluids.

Key words: isotopic geochemistry, orogenic gold deposit, Dapinggou gold deposit, northern Altun

中图分类号: 

  • P597
[1] 陈衍景.造山型矿床、成矿模式及找矿潜力[J].中国地质,2006, 33(6):1181-1196. Chen Yanjing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential[J]. Geology in China,2006, 33(6):1181-1196.
[2] Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenicgold Deposits:A Proposed Classification in the Context of Their Crustal Distributionand Relationship to Other Gold Deposit Types[J]. Ore Geology Reviews,1998, 13:7-27.
[3] Groves D I, Goldfarb R J, Robert F,et al. Gold Deposits in Metamorphic Belts:Overview of Current Understanding,Outstanding Problems,Future Research,and Exploration Significance[J]. Economic Geology,2003, 98(1):1-29.
[4] Goldfarb R J, Groves D I, Cardoll S. Orogenic Au and Geologic Time:A Global Synthesis[J].Ore Geology Reviews,2001, 18:1-75.
[5] Goldfarb R J, Snee L W, Pickthorn W J. Orogenesis, High-T Thermal Events, and Gold Vein Formation Within Metamorphic Rocks of the Alaskan Cordillera[J]. Mineralogical Magazine,1993,57(3):375-394.
[6] Goldfarb R J, Baker T, Dube B, et al. Distribution, Character and Genesis of Gold Deposits in Metamorphic Terranes[J]. Economic Geology, 2005, 100:407-450.
[7] 毛景文,张作衡,王义天,等.华北克拉通周缘中生代造山型金矿床的氮同位素和氮含量记录[J].中国科学:D辑,2002,32(9):705-716. Mao Jingwen, Zhang Zuoheng, Wang Yitian, et al. Nitrogenisotope and Content Record of Mesozoic Orogenic Gold Deposits Surrounding the North China Craton[J]. Science in China:Series D, 2002, 32(9):705-716.
[8] Chen H Y, Chen Y J, Baker M.Isotopic Geochemistry of the Sawayaerdun Orogenic Type Gold Deposit, Tianshan, Northwest China:Implications for Ore Genesis and Mineral Exploration[J]. Chemical Geology,2012, 310:1-11.
[9] Chen Y J,Pirajno F,Qi J P,et al.The Shanggong Gold Deposit,Eastern Qinling Orogen,China:Isotope Geochemistry and Implications for Ore Genesis[J].Journal of Asian Earth Sciences,2008,33:252-266.
[10] 蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省[J].岩石学报,2009, 25(11):2727-2738. Jiang Shaoyong,Dai Baozhang,Jiang Yaohui,et al.Jiaodong and Xiaoqinling:Two Orogenic Gold Provinces Formed in Different Tectonic Settings[J]. Acta Petrologica Sinica,2009,25(11):2727-2738.
[11] 邱正杰, 范宏瑞, 丛培章, 等. 造山型金矿床成矿过程研究进展[J]. 矿床地质, 2015, 34(1):21-38. Qiu Zhengjie, Fan Hongrui, Cong Peizhang, et al. Recent Progress in the Study of Ore-Forming Processes of Orogenic Gold Deposits[J].Mineral Deposits, 2015, 34(1):21-38.
[12] 李惠民, 陆松年, 郑健康, 等. 阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义[J]. 矿物岩石地球化学通报, 2001, 20(4):259-262. Li Huimin, Lu Songnian, Zheng Jiankang, et al.Dating of 3.6 Ga Zircons in Granite-Gneiss from the Eastern Altyn Mountains and Its Geological Significance[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4):259-262.
[13] 张建新,孟繁聪,于胜尧.两条不同类型的HP/LT和UHP变质带对祁连-阿尔金早古生代造山作用的制约[J].岩石学报,2010, 26(7):1967-1992. Zhang Jianxin, Meng Fancong, Yu Shengyao. Two Contrasting HP/LT and UHP Metamorphic Belts:Constraint on Early Paleozoic Orogeny in Qilian-Altun Orogen[J].Acta Petrologica Sinica, 2010, 26(7):1967-1992.
[14] 杨经绥,史仁灯,吴才来,等. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年[J].岩石学报,2008, 24(7):1567-1584. Yang Jingsui,Shi Rendeng,Wu Cailai,et al. Petrology and SHRIMP Age of the Hongliugou Ophiolite at Milan,North Altun,at the Northern Margin of the Tibetan Plateau[J].Acta Petrologica Sinica,2008, 24(7):1567-1584.
[15] 韩凤彬,陈柏林,崔玲玲,等. 阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义[J].岩石学报,2012,28(7):2277-2291. Han Fengbin,Chen Bailin,Cui Lingling,et al. Zircon SHRIMP U-Pb Age of Intermediate-Acid Intrusive Rocks in Kaladawan Area,Eastern Altun Mountains,NW China,and Its Implications[J]. Acta Petrologica Sinica,2012,28(7):2277-2291.
[16] 陈柏林,王世新,祁万修,等.阿尔金北缘大平沟韧脆性变形带特征[J].岩石学报,2008, 24(4):637-644. Chen Bailin,Wang Shixin,Qi Wanxiu,et al. Study on the Dapinggou Ductile-Brittle Deformation Belt in Northern Altun Margin Area,NW China[J]. Acta Petrologica Sinica, 2008, 24(4):637-644.
[17] 陈宣华,Gehrels G,王小凤,等.阿尔金山北缘花岗岩的形成时代及其构造环境探讨[J].矿物岩石地球化学通报,2003, 22(4):294-298. Chen Xuanhua,Gehrels G,Wang Xiaofeng,et al. Granite from North Altyn Tagh,NW China:U-Pb Geochronology and Tectonic Setting[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2003, 22(4):294-298.
[18] 吴才来,姚尚志,曾令森,等.北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年[J].中国科学:D辑, 2007,37(1):10-26. Wu Cailai,Yao Shangzhi,Zeng Lingsen,et al.Characteristics of the Granitoid Complex and Its Zircon SHRIMP Dating in the Bashikaogong-Simierbulake Area, North Altun, NW China[J]. Science in China:Series D, 2007,37(1):10-26.
[19] 刘良,车自成,王焰,等. 阿尔金高压变质岩带的特征及其构造意义[J].岩石学报,1999, 5(1):57-64. Liu Liang,Che Zicheng,Wang Yan,et al. The Petrological Characters and Geotectonic Setting of High-Pressure Metamorphic Rock Belts in Altun Mountains[J]. Acta Petrologica Sinica,1999, 5(1):57-64.
[20] Yin A, Rumelhart P E, Butler R,et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10):1257-1295.
[21] 杨屹,陈宣华,Gehrels G E,等.阿尔金山早古生代岩浆活动与金成矿作用[J].矿床地质,2004, 23(4):464-472. Yang Yi,Chen Xuanhua,Gehrels G E,et al. Early Paleozoic Magmatism and Gold Metallogenesis in Altun Mountains, Northwest China[J]. Mineral Deposits,2004, 23(4):464-472.
[22] Lu S N, Li H K, Zhang C L,et al. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments[J]. Precambrian Research, 2008, 160(1/2):94-107.
[23] Meng L T, Chen B L, Zhao N N,et al. The Discribution, Geochronology and Geochemistry of Early Palaeozoic Granitoid Plutons in the North Altun Orogenic Belt, NW China:Implication for the Petrogenesis and Tectonic Evolution[J]. Lithos, 2017, 268/269/270/271:399-417.
[24] 孟令通, 陈柏林, 罗迪柯, 等. 北阿尔金喀腊大湾地区4337高地花岗闪长岩SHRIMP U-Pb定年及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(6):1757-1771. Meng Lingtong, Chen Bailin, Luo Dike, et al. SHRIMP Zircon U-Pb Geochronology of Northern Highland 4337 Granodiorite in Kaladawan Area of Northern Altun Mountains and Its Tectonic Implications[J].Journal of Jilin University(Earth Science Edition), 2015, 45(6):1757-1771.
[25] 陈柏林,杨屹,王小凤,等. 阿尔金北缘大平沟金矿床成因[J].矿床地质,2005, 24(2):168-178. Chen Bailin, Yang Yi, Wang Xiaofeng, et al. Origin of Dapinggou Gold Deposit in Northern Altun Area, Northwestern China[J].Mineral Deposits,2005,24(2):168-178.
[26] 李学智, 陈柏林, 王小凤, 等. 大平沟金矿床矿石及金矿物特征[J].地质与勘探, 2002, 38(5):49-53. Li Xuezhi, Chen Bailin, Wang Xiaofeng, et al. Ore Features and Gold Occurrence of the Dapingou Gold Deposit, Xinjiang, Northwest China[J].Geology & Prospecting, 2002, 38(5):49-53.
[27] 陈宣华,杨风,王小凤,等.阿尔金北缘地区剥离断层控矿和金矿成因:以大平沟金矿床为例[J]. 吉林大学学报(地球科学版), 2002, 32(2):122-127. Chen Xuanhua, Yang Feng, Wang Xiaofeng, et al. Detachment and Gold Deposit in North Alytn Tagh:An Example Study of Dapingou Gold Deposit[J].Journal of Jilin University(Earth Science Edition),2002, 32(2):122-127.
[28] 杨屹,杨风,刘新营,等.阿尔金大平沟金矿床地质特征及成因初探[J]. 新疆地质, 2002, 20(1):44-48. Yang Yi, Yang Feng, Liu Xinying, et al. Geological Feature and Origin of Dapinggou Gold Deposit in Altun Area[J]. Xinjiang Geology, 2002, 20(1):44-48.
[29] 杨屹.阿尔金大平沟金矿床成矿时代Rb-Sr定年[J]. 新疆地质, 2003, 21(3):303-306. Yang Yi. Rb-Sr Isotope Age of the Mineralization of Dapinggou Gold Deposits in Altun[J]. Xinjiang Geology, 2003, 21(3):303-306.
[30] 王小凤, 陈宣华, 陈正乐, 等. 阿尔金地区成矿条件与远景预测[M]. 北京:地质出版社, 2004:1-463. Wang Xiaofeng, Chen Xuanhua, Chen Zhengle, et al. Geological Setting for Metallogenesis and Prospecting of Ore Deposits in the Altyn Tgah Area[M]. Beijing:Geological Publishing House, 2004:1-463.
[31] Zhao K D, Jiang S Y, Ni P, et al. Sulfur, Lead and Helium Isotopic Compositions of Sulfide Minerals from the Dachang Sn-polymetallic Ore District in South China Implication for Ore Genesis[J]. Mineralogy and Petrology, 2007, 89:251-273.
[32] Belshaw N S, Freedman P A, O'Nions R K, et al. A New Variable Dispersion Double-Focusing Plasma Mass Spectrometer with Performance Illustrated for Pb Isotopes[J]. International Journal of Mass Spectrometry, 1998, 181:51-58.
[33] Robinson B W, Kasakabe M. Quantitative Preparation of Sulfur Dioxide for 34S/32S Analyses from Sulphides by Combustion with Cuprous Oxide[J]. Analytical Chemistry, 1975, 47:1179-1181.
[34] Clayton R N, Mayeda T K. The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27:43-52.
[35] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartzand Water[J]. Journal of Geophysical Research,1972, 77:3057-3067.
[36] Zartman R E, Doe B R. Plumbotectonics:The Model[J]. Tectonophysics,1981,75:135-162.
[37] Kerrich R, Goldfarb R J, Groves D, et al. The Characteristics, Origins,and Geodynamic Settings of Supergiant Gold Metallogenic Provinces[J]. Science in China:Series D, 2000, 43:1-68.
[38] Mc Cuaig C T, Kerrich R. p-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits:Evidence from Alteration Systematics[J]. Ore Geology Review,1998, 12:381-453.
[39] Jia Y F, Kerrich R, Goldfarb R. Metamorphic Origin of Ore-Forming Fluids for Orogenic Gold-Bearing Quartz Vein Systems in the North American Cordillera:Constraints Froma Reconnaissance Study of Delta δ15N, δD, and δ18O[J]. Economic Geology, 2003, 98:109-123.
[40] Goldfarb R J, Ayuso R, Miller M L, et al. The Late Cretaceous Donlin Creekgold Deposit, Southwestern Alaska:Controls on Epizonal Ore Formation[J]. Economic Geology, 2004, 99:643-671.
[41] Hosftra A H, Snee L W, Rye R O, et al. Age Constraints on Jerritt Canyon and Other Carlin-Type Gold Deposits in the Western United States-Relationship to Mid-Tertiary Extension and Magmatism[J]. Economic Geology, 1999, 94:769-802.
[42] 李海兵, 许志琴, 杨经绥, 等. 阿尔金断裂带最大累积走滑位移量:900 km?[J].地质通报, 2007, 26(10):1288-1298. Li Haibing, Xu Zhiqin, Yang Jingsui, et al.The Maximum Cumulative Strike-Slip Displacement of the Altyn Tagh Fault:900 km?[J]. Geological Bulletin of China, 2007, 26(10):1288-1298.
[1] 孙宏伟, 唐文龙, 刘晓阳, 任军平, 许康康, 吴兴源, 贺福清. 非洲东南部造山型金矿成矿环境与资源潜力分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1654-1668.
[2] 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155.
[3] 尤敏鑫,刘建民. 同位素地球化学在峨眉山大火成岩省研究中的应用现状与进展[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1231-1243.
[4] 丁清峰, 金圣凯, 王冠, 张本龙. 青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报(地球科学版), 2013, 43(2): 415-426.
[5] 丁正江,孙丰月,李碧乐,赵俊伟,李世金. 青海省苦海汞矿床形成条件及成因探讨[J]. J4, 2009, 39(1): 9-0016.
[6] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516-520.
[7] 刘显凡,宋祥峰,卢秋霞,陶 专,龙训荣. 地幔流体在滇西富碱斑岩成岩成矿过程中的作用--地质年代学和同位素地球化学制约[J]. J4, 2006, 36(04): 503-510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!