吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 480-499.doi: 10.13278/j.cnki.jjuese.20190365

• 沉积盆地分析 • 上一篇    下一篇

比较沉积学概念体系的厘定与重构

方石, 赵云   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2019-12-11 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:方石(1974-),男,副教授,博士,主要从事油气勘探、沉积学、构造热年代学方面的研究,E-mail:fs812625@vip.sina.com
  • 基金资助:
    国家自然科学基金项目(41472173);国土资源部杰出青年科技人才培养计划项目(201311111);中国地质调查局公益基础项目(CDD1910-02,DD20189613)

Definition and Reestablishment on Conception System About Comparative Sedimentology

Fang Shi, Zhao Yun   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2019-12-11 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Natural Science Foundation of China (41472173), Ministry of Land and Resources Outstanding Youth Science and Technology Talent Training Program of China(201311111) and Project of China Geological Survey (CDD1910-02,DD20189613)

摘要: 近代沉积学的诸多进步都是由比较沉积学推动的,它对沉积学的发展有重要意义。目前,其被广泛应用于相模式的推断和沉积相带、储层及其非均质性的预测。比较沉积学是利用比较对象所选变量的时空展布建立模型,再利用模型推断预测被比较对象因变量时空展布的沉积学分支学科。它是根据比较沉积学类比原则,在自生旋回、他生旋回识别的基础上开展的或然性推理。完整的比较沉积学工作过程必然存在2个步骤——比较建模和推断预测。其研究方法包括相模式分析法、几何形态分析法、沉积物载荷分散体系分析法和模拟重构法4种,这些方法多与层序地层学方法联合使用。本文根据比较沉积学的原理和方法综合分析了历年来的典型成果。未来比较沉积学将开展更多与边界条件有关的研究、多尺度统一解释的研究,进一步加强量化,提高预测精度的研究。

关键词: 比较沉积学, 特征, 分类, 原理, 概念厘定, 研究现状

Abstract: Many aspects of Sedimentology are promoted by Comparative Sedimentology in recent eras, which shows the great significance of Comparative Sedimentology to the development of Sedimentology. At present, it is widely used in the inference of the facies models, the prediction of sedimentary facies belts,and the prediction of reservoirs & their heterogeneity. Comparative Sedimentology is a branch of Sedimentology, which uses the selected variables of the compared object to build its spatio-temporal model, and further to predict the distribution of the dependent variables. Two steps should be included in a complete Comparative Sedimentology process:comparative modeling and inferential prediction; in other words, according to the analogy principle of comparative sedimentology, probability reasoning is carried out on the basis of identifying natural cycles and induced cycles. Its research methods include the local facies pattern analysis, the geometric morphology analysis, the sediment loading dispersion system analysis,and the simulation reconstruction, which are normally combined with sequence stratigraphy. The typical research results in recent decades have been comprehensively analyzed on the basis of the principles and methods of Comparative Sedimentology. It can be predicted that the further research of Comparative Sedimentology will concentrates on boundary conditions, multi-scale unification, and quantification to improve prediction accuracy.

Key words: Comparative Sedimentology, characteristics, classification, principle, conception definition, research status

中图分类号: 

  • P618.13
[1] 周锡强,陈代钊,刘牧,等.中国沉积学发展战略:沉积地球化学研究现状与展望[J].沉积学报, 2017, 35(6):1293-1316. Zhou Xiqiang, Chen Daizhao, Liu Mu, et al. The Future of Sedimentology in China:A Review and Perspective of Sedimentary Geochemistry[J]. Acta Sedimentologica Sinica, 2017, 35(6):1293-1316.
[2] 何起祥.沉积地球科学的历史回顾与展望[J].沉积学报, 2003, 21(1):10-18. He Qixiang. Sedimentary Earth Sciences:Yesterday, Today and Tomorrow[J]. Acta Sedimentologica Sinica, 2003, 21(1):10-18.
[3] Walker R G. Facies Models Revisited[J]. Special Publications, 2006, 84:1-17.
[4] 刘招君,董清水,王嗣敏,等. 陆相层序地层学导论与应用[M].北京:石油工业出版社, 2002:1-26. Liu Zhaojun, Dong Qingshui, Wang Simin, et al. Introduction to Continental Sequence Stratigraphy and Application[M]. Beijing:Petroleum Industry Press, 2002:1-26.
[5] 朱筱敏,谈明轩,董艳蕾,等.当今沉积学研究热点讨论:第20届国际沉积学大会评述[J].沉积学报, 2019, 37(1):1-16. Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current Hot Topics of Sedimentology:Comment on the 20th International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2019, 37(1):1-16.
[6] 何起祥,业治铮,张明书. 比较沉积学的理论与实践[J].海洋地质与第四纪地质, 1988, 8(1):1-8. He Qixiang, Ye Zhizheng, Zhang Mingshu. Theory and Practice of Comparative Sedimentology[J]. Marine Geology & Quaternary Geology, 1988, 8(1):1-8.
[7] 何辉,宋新民,蒋有伟,等.砂砾岩储层非均质性及其对剩余油分布的影响:以克拉玛依油田二中西区八道湾组为例[J].岩性油气藏, 2012, 24(2):117-123. He Hui, Song Xinmin, Jiang Youwei, et al. Heterogeneity of Sandy Conglomerate Reservoir and Its Influence on Remaining Oil Distribution:A Case Study from Badaowan Formation in the Mid-West of Block Ⅱ in Karamay Oilfield[J]. Lithologic Reservoirs, 2012, 24(2):117-123.
[8] 英紫娟,覃素华,孙立志,等.凝灰质致密砂岩储层预测及效果[J].石油地球物理勘探, 2018, 53(增刊2):246-250. Ying Zijuan, Qin Suhua, Sun Lizhi, et al. Tight Tuffaceous Sand Reservoir Prediction[J]. Oil Geophysical Prospecting, 2018, 53(Sup.2):246-250.
[9] 朱超,刘占国,杨少勇,等.利用相控分频反演预测英西湖相碳酸盐岩储层[J].石油地球物理勘探, 2018, 53(4):832-841. Zhu Chao, Liu Zhanguo, Yang Shaoyong,et al. Lacustrine Carbonate Reservoir Predictioin in Yingxi, Qaidam Basin with the Facies-Constrained and Segmented-Frequency-Band Inversion[J]. Oil Geophysical Prospecting, 2018, 53(4):832-841.
[10] 于兴河,陈建阳,张志杰,等. 油气储层相控随机建模技术的约束方法[J].地学前缘, 2005, 12(3):237-244. Yu Xinghe, Chen Jianyang, Zhang Zhijie, et al. Stochastic Modeling for Characteristics of Petroleum Reservoir Constrained by Facies[J]. Earth Science Frontiers, 2005, 12(3):237-244.
[11] 周斌,汤军,周金应,等.湖北刘家场地区奥陶系地层沉积相及马尔科夫链分析[J].地质学刊, 2013, 37(4):621-625. Zhou Bin, Tang Jun, Zhou Jinying, et al. The Ordovician Sedimentary Facies and Markov Chain Analysis in the Region of Liujiachang in Hubei[J]. Journal of Geology, 2013, 37(4):621-625.
[12] Grammer G M. Carbonate Platforms:Exploration and Production Scale Insight from Modern Analogs in the Bahamas[J]. The Leading Edge, 2001, 20(3):252-261.
[13] 陈飞,胡光义,胡宇霆,等.储层构型研究发展历程与趋势思考[J].西南石油大学学报(自然科学版), 2018, 40(5):1-14. Chen Fei, Hu Guangyi, Hu Yuting, et al. Development History and Future Trends in Reservoir Architecture Research[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(5):1-14.
[14] Harris P M. Lessons from a Modern Carbonate Sandbody:A Personal Experience of Comparative Sedimentology[J]. The Depositional Record, 2019, 5(3):438-450.
[15] Postma G, Kleinhans M G, Meijer P T H, et al. Sediment Transport in Analogue Flume Models Compared with Real-World Sedimentary Systems:A New Look at Scaling Evolution of Sedimentary Systems in a Flume[J]. Sedimentology, 2008, 55(6):1541-1557.
[16] Popper K.科学发现的逻辑[M].查汝强,邱仁宗译.杭州:中国美术学院出版社, 2008:1-51. Popper K. The Logic of Scienntific Discovery[M]. Translated by Zha Ruqiang, Qiu Renzong. Hangzhou:China Academy of Art Press, 2008:1-51.
[17] Virgili C. Charles Lyell and Scientific Thinking in Geology[J]. Comptes Rendus Geoscience, 2007, 339(8):572-584.
[18] Middleton G V. Johannes Walther's Law of the Correlation of Facies[J]. Geological Society of America Bulletin, 1973, 84(3):979-987.
[19] Callaway C. III:A Plea for Comparative Lithology[J]. Geological Magazine, 2009, 2(6):258-264.
[20] Okada H, Smith A K. The Birth of Sedimentology:Henry Clifton Sorby and Johannes Walther[J]. Geology Today, 2009, 25(6):211-218.
[21] Ginsburg R N. Introduction to Comparative Sedimentology of Carbonate[J]. AAPG Bulletin, 1974, 58(5):781-786.
[22] Walther J. Einleitung in Die Geologie als Historische Wissenschaft[M]. Jena:Verlag von Gustav Fischer, 1893.
[23] Allen J R L. A Review of the Origin and Characteristics of Recent Alluvial Sediments[J]. Sedimentology, 1965, 5(2):89-191.
[24] Fisher W L, Mc Gowen J H. Depositional Systems in Wilcox Group (Eocene) of Texas and Their Relation to Occurrence of Oil and Gas[J]. American Association of Petroleum Geologists Bulletin, 1969, 53:30-54.
[25] Leeder M R.FLuviatile Fining-Upwards Cycles and the Magnitude of Paleochannels[J]. Geology Magazine, 1973, 110(3):265-276.
[26] Harris P M, Purkis S J, Ellis J. Analyzing Spatial Patterns in Modern Carbonate Sand Bodiesfrom Great Bahama Bank[J]. Journal of Sedimentary Research, 2011, 81(3):185-206.
[27] Dravis J J, Wanless H R. Impact of Strong Easterly Trade Winds on Carbonate Petroleum Exploration-Relationships Developed from Caicos Platform,Southeastern Bahamas[J]. Marine and Petroleum Geology, 2017, 85:272-300.
[28] Grammer G M,Harris P M,Eberli G P.储层模拟中露头和现代沉积类比的综合研究[M]. 蔡希源,李思田,郑和容,等译.北京:地质出版社,2008:1-23. Grammer G M, Harris P M, Eberli G P. Integration of Outcrop and Modern Analogs in Reservoir Modeling[M]. Translated by Cai Xiyuan, Li Sitian, Zheng Herong, et al. Beijing:Geological Publishing House, 2008:1-23.
[29] Eberli G P, Ginsburg R N. Segmentation and Coalescence of Cenozoic Carbonate Platforms,Northwestern Great Bahama Bank[J]. Geology, 1987, 15(1):75-79.
[30] Boer P L de. Mechanical Effects of Micro-Organisms on Intertidal Bedform Migration[J]. Sedimentology, 1981, 28(1):129-132.
[31] Postma G, Hilgen F J, Zachariasse W J. Precession-Punctuated Growth of a Late Miocene Submarine-Fan Lobe on Gavdos (Greece)[J]. Terra Nova, 1993, 5(5):438-444.
[32] Cartigny M J B, Eggenhuisen J T, Hansen E W M, et al. Concentration-Dependent Flow Stratification in Experimental High-Density Turbidity Currents and Their Relevance to Turbidite Facies Models[J]. Journal of Sedimentary Research, 2013, 83(12):1047-1065.
[33] 梁瑞仁. 比较沉积学研究讲座讲稿汇编[R]. 成都:地质矿产部成都地矿研究所, 1983:1-88. Liang Ruiren. Compilation of Lectures on Comparative Sedimentology[R]. Chengdu:Chengdu Institute of Geology and Mineral Resources, 1983:1-88.
[34] Burk C A, Drake C L.The Geology of Continental Margins[M]. Berlin:Springer-Verlag, 1974:137-155.
[35] Schlager W, Ginsburg R N. Influence of Platform-Derived Sediment on Facies, Diagenesis, and Deformation in Slope and Basinal Deposits, Tongue of Ocean,Bahamas[J]. American Association of Petroleum Geologists Bulletin,1978, 62:560.
[36] Ginsburg R N. Sedimentary Models of Pattern, Process, and Succession Derived from Bahamian Carbonates[J]. American Association of Petroleum Geologists Bulletin, 1984, 68(11):1836.
[37] Longman M W. A Process Approach to Recognizing Facies of Reef Complexes[J]. Special Publications, 1981, 30:9-40.
[38] Miall A D. Architectural-Element Analysis:A New Method of Facies Analysis Applied to Fluvial Deposits[J]. Earth-Science Reviews, 1985, 22(4):261-308.
[39] Journel A G. Geostatistics for Conditional Simulation of Ore Bodies[J]. Economic Geology, 1974, 69(5):673-687.
[40] Journel A G. Geostatistics:Models and Tools for the Earth Sciences[J]. Mathematical Geology, 1986, 18(1):119-140.
[41] 毛治国,胡望水,余海洋.油藏地质模型研究进展[J].特种油气藏, 2007, 14(4):6-12. Mao Zhiguo, Hu Wangshui, Yu Haiyang. Advancement of Reservoir Geological Model[J]. Special Oil and Gas Reservoir, 2007, 14(4):6-12.
[42] Kyriakidis P C, Journel A G. Geostatistical Space-Time Models:A Review[J]. Mathematical Geology, 1999, 31(6):651-684.
[43] Haldorsen H H, Lake L W. A New Approach to Shale Management in Field-Scale Models[J]. Society of Petroleum Engineers Journal, 1984, 24(4):447-457.
[44] Best J L, Reid I. Separation Zone at Open-Channel Junctions[J]. Journal of Hydraulic Engineering, 1984, 110(11):1588-1594.
[45] 曹耀华,赖志云,刘怀波,等.沉积模拟实验的历史现状及发展趋势[J].沉积学报, 1990, 8(1):143-147. Cao Yaohua, Lai Zhiyun, Liu Huaibo, et al. Sedimentary Simulation Experiments:In the Past, Current States, and Developing Trend[J]. Acta Sedimentologica Sinica, 1990, 8(1):143-147.
[46] Mclaren P, Boeles D. The Effects of Sediment Transport on Grain-Size Distribution[J]. Journal of Sedimentary Petrology, 1985, 55(4):457-470.
[47] Dyer K R. Fine Sediment Particle Transport in Estuaries[C]//Dronkers J, van Leussen W. Physical Processes in Estuaries. Berlin:Springer-Verlag, 1988:295-310.
[48] Uncles R J, Elliott R C A, Weston S A, et al. Synoptic Observations of Salinity, Suspended Sediment and Vertical Current Structure in a Partly Mixed Estuary[J]. Lecture Notes on Coastal and Estuarine Studies, 1986, 16:58-70.
[49] 高白水. 内蒙古岱海盆地现代沉积特征及控制因素[D]. 北京:中国石油大学(北京), 2016:1-27. Gao Baishui. Sedimentary Characteristics and Controlling Factors of Daihai Basin, Inner Mongolia[D]. Beijing:China University of Petroleum (Beijing), 2016:1-27.
[50] 尹寿鹏,谢庆宾,管守锐. 网状河比较沉积学研究[J].沉积学报, 2000, 18(2):221-226. Yin Shoupeng, Xie Qingbin, Guan Shourui. Study on Anastomosed River with Comparative Sedimentology[J]. Acta Sedimentologica Sinica, 2000, 18(2):221-226.
[51] 任明达.冲积扇比较沉积学:地下水和油气的富集规律[J].沉积学报, 1983, 1(4):78-91. Ren Mingda. Comparative Sedimentology of Alluvial Fans:The Rule of Enrichment of Oil-Gas and Groundwater[J]. Acta Sedimentologica Sinica, 1983, 1(4):78-91.
[52] 师永民,董普,张玉广,等.青海湖现代沉积对岩性油气藏精细勘探的启示[J]. 天然气工业, 2008(1):54-57. Shi Yongmin, Dong Pu, Zhang Yuguang, et al. Revelation of Modern Deposits in Qinghai Lake to Precise Exploration of Lithologic Hydrocarbon Reservoirs[J]. Natural Gas Industry, 2008(1):54-57.
[53] 张明书.生物礁比较沉积学与礁油气藏探查[J].海洋地质与第四纪地质, 1990, 10(2):13-23. Zhang Mingshu. Comparative Sedimentology and Oil-Gas Pool Survey of Organic Reef[J]. Marine Geology & Quaternary Geology, 1990, 10(2):13-23.
[54] 何起祥,业治铮,张明书.四川盆地晚二叠世沉积作用的比较沉积学分析[J]. 海洋地质与第四纪地质, 1990, 10(2):1-12. He Qixiang, Ye Zhizheng, Zhang Mingshu. Late Permian Sedimentation in Sichuan Basin and Analysis Based on Comparative Sedimentology[J]. Marine Geology and Quaternary Geology, 1990, 10(2):1-12.
[55] 赵强,许红,吴时国,等. 南沙曾母盆地与北巴拉望盆地碳酸盐台地形成演化及其比较沉积学[J].海洋地质动态, 2009, 25(9):1-9. Zhao Qiang, Xu Hong, Wu Shiguo, et al. Formation and Evolution of the Carbonate Platform in Zengmu Basin and North Palawan Basin of South China Sea and Its Comparative Sedimentology[J]. Marine Geology Lettters, 2009, 25(9):1-9.
[56] Tye R S. Geomorphology:An Approach to Determining Subsurface Reservoir Dimensions[J]. AAPG Bulletin, 2004, 88(8):1123-1147.
[57] Bassant P, Van Buchem F S P, Strasser A. The Stratigraphic Architecture and Evolution of the Burdigalian Carbonate-Siliciclastic Sedimentary Systems of the Mut Basin, Turkey[J]. Sedimentary Geology, 2005, 173(1):187-232.
[58] Harris P M. Delineating and Quantifying Depositional Facies Patterns in Carbonate Reservoirs:Insight from Modern Analogs[J]. AAPG Bulletin, 2010, 94(1):61-86.
[59] 张昌民,尹太举,朱永进,等.浅水三角洲沉积模式[J].沉积学报, 2010, 28(5):933-944. Zhang Changmin, Yin Taiju, Zhu Yongjin, et al. Shallow-Water Deltas and Models[J]. Acta Sedimentologica Sinica, 2010, 28(5):933-944.
[60] 石书缘,胡素云,冯文杰,等.基于Google Earth软件建立曲流河地质知识库[J].沉积学报, 2012, 30(5):869-878. Shi Shuyuan, Hu Suyun, Feng Wenjie, et al. Building Geological Knowledge Database Based on Google Earth Software[J]. Acta Sedimentologica Sinica, 2012, 30(5):869-878.
[61] 王海峰,范廷恩,宋来明,等.高弯度曲流河砂体规模定量表征研究[J].沉积学报, 2017, 35(2):279-289. Wang Haifeng, Fan Ting'en, Song Laiming, et al. Quantitative Characterization Study on Sand Body Scale in High Sinuosity Meandering River[J]. Acta Sedimentologica Sinica, 2017, 35(2):279-289.
[62] 姜在兴.沉积学[M].北京:石油工业出版社, 2003:130-187. Jiang Zaixing. Sedimentology[M]. Beijing:Petroleum Industry Press, 2003:130-187.
[63] 杨凤丽,张善文,才巨宏,等.曲流河砂体的沉积相、测井相、地震相研究及预测:渤海湾南部埕岛油田实例[J].石油地球物理勘探, 1999, 34(2):171-179. Yang Fengli, Zhang Shanwen, Cai Juhong, et al. Research on Sedimentary Facies, Logging Facies and Seismic Facies of Meander Sand Body and Its Prediction:An Example of Chengdao Area in South Bohai Sea[J]. Oil Geophysical Prospecting, 1999, 34(2):171-179.
[64] 高志勇,石雨昕,毛治国,等.河流沉积学研究热点与进展:第11届国际河流沉积学大会综述[J].沉积学报, 2017, 35(6):1097-1109. Gao Zhiyong, Shi Yuxin, Mao Zhiguo, et al. Current Hot Topics and Advances of Fluvial Sedimentology:A Summary from 11th International Conference on Fluvial Sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(6):1097-1109.
[65] Anderton R. Clastic Facies Models and Facies Analysis[J].Geological Society, London, Special Publications, 1985, 18(1):31-47.
[66] Selley R C. Studies of Sequence in Sediments Using a Simple Mathematical Device[J]. Quarterly Journal of the Geological Society, 1969, 125(1):557-581.
[67] 刘招君.闽西南石炭纪沉积相分析:兼论古构造对沉积作用的控制[J].长春地质学院学报, 1983(3):83-95. Liu Zhaojun. Facies Analysis of the Carbonirerous System and the Paleotectonic Control of Sedimentation in South-Western Fujian Province[J]. Journal of Changchun College of Geology, 1983(3):83-95.
[68] 尹寿鹏,任明达,王随继.河流比较沉积学与河流砂岩油藏开发[J].应用基础与工程科学学报, 1998, 6(1):26-36. Yin Shoupeng, Ren Mingda, Wang Suiji. Comparative Sedimentology and Reservoir Development of Fluvial Sand Bodies[J]. Journal of Basic Science and Engineering, 1998, 6(1):26-36.
[69] 李娜.逻辑学导论[M].武汉:武汉大学出版社, 2010:131-133. Li Na. Introduction to Logic[M]. Wuhan:Wuhan University Press, 2010:131-133.
[70] 郭桥,资建民.大学逻辑教程[M].北京:人民出版社, 2017:205-212. Guo Qiao, Zi Jianmin. College Logic Fundamental Course[M]. Beijing:Renmin Press, 2017:205-212.
[71] Cecil C B. The Concept of Autocyclic and Allocyclic Controls on Sedimentation and Stratigraphy, Emphasizing the Climatic Variable[J]. Special Publications,2003, 77:13-20.
[72] Tresch J, Strasser A. Allogenic and Autogenic Processes Combined in the Formation of Shallow-Water Carbonate Sequences (Middle Berriasian, Swiss and French Jura Mountains)[J]. Swiss Journal of Geosciences, 2011, 104(2):299-322.
[73] Dijk V M, Postma G, Kleinhans M G. Autocyclic Behaviour of Fan Deltas:An Analogue Experimental Study[J]. Sedimentology, 2009, 56(5):1569-1589.
[74] 王嗣敏,刘招君.高分辨率层序地层学在陆相地层研究中若干问题的讨论[J].地层学杂志, 2004, 28(2):179-184. Wang Simin, Liu Zhaojun. Discussion on Some Problems of High Resolution Sequence Stratigraphy in the Study of Continental Stratigraphy[J]. Journal of Stratigraphy, 2004, 28(2):179-184.
[75] 陆永潮,杜学斌,陈平,等.油气精细勘探的主要方法体系:地震沉积学研究[J].石油实验地质, 2008, 30(1):1-5. Lu Yongchao, Du Xuebin, Chen Ping, et al. Main Methods System of Fine Petroleum Exploration:Seismic Sedimentology[J]. Petroleum Geology & Experiment, 2008, 30(1):1-5.
[76] Cartwright J, Huuse M. 3D Seismic Technology:The Geological Hubble[J]. Basin Research, 2005, 17(1):1-20.
[77] 胡文祥.比较学导论[J].科学学研究, 1994, 12(3):6-13. Hu Wenxiang. Introduction to Comparative Studies[J]. Studies in Science of Science, 1994, 12(3):6-13.
[78] 易灿南,吴超,胡鸿.比较安全学比较研究的要素、单元及路径[J].中国安全生产科学技术, 2015, 11(4):140-146. Yi Cannan, Wu Chao, Hu Hong. Research on Elements, Units and Paths of Comparative Study for Comparative Safety Science[J]. Journal of Safety Science and Technology, 2015, 11(4):140-146.
[79] 杨帅,谢小平.剑门关丹霞地貌晚侏罗-早白垩世沉积相的马尔科夫链特征[J].地质学刊, 2017, 41(2):276-281. Yang Shuai, Xie Xiaoping. Markov Chain Characteristics of Late Jurassic-Early Cretaceous Sedimentary Facies of the Danxia Landform in Jianmenguan Pass[J]. Journal of Geology, 2017, 41(2):276-281.
[80] 刘彩燕,潘树新,梁苏娟.松辽盆地西部地区地震沉积相研究[J].地球物理学进展, 2017, 32(5):2044-2050. Liu Caiyan, Pan Shuxin, Liang Sujuan. Seismic-Sedimentologic Facies of Western Area of Songliao Basin[J]. Progress in Geophysics, 2017, 32(5):2044-2050.
[81] 肖运凤.东营南坡石村断层下降盘沙二段沉积特征与有利砂体评价[D].青岛:中国石油大学(华东), 2017:19-71. Xiao Yunfeng. Sedimentary Characteristics of Es2 Member of Shahejie Formation in the Shicun Fault Footwall of the Southern Slope of Dongying Sag and Reservoir Quality Evaluation[D]. Qingdao:China University of Petroleum (East China), 2017:19-71.
[82] 高抒. 沉积记录研究的现代过程视角[J].沉积学报, 2017, 35(5):918-925. Gao Shu. Discover More Information from Sedimentary Records:Views Based on Contemporary Earth Surface Dynamic Processes[J]. Acta Sedimentologica Sinica, 2017, 35(5):918-925.
[83] Weber K J, van Geuns L C. Framework for Constructing Clastic Reservoir Simulation Models[J]. Journal of Petroleum Technology, 1990, 42(10):1249-1253.
[84] 乔辉,王志章,李莉,等. 基于卫星影像建立曲流河地质知识库及应用[J].现代地质, 2015, 29(6):1444-1453. Qiao Hui, Wang Zhizhang, Li Li, et al. Application of Geological Knowledge Database of Modern Meandering River Based on Satellite Image[J]. Geoscience, 2015, 29(6):1444-1453.
[85] Colombera L, Mountney N P, Mc Caffrey W D. A Quantitative Approach to Fluvial Facies Models:Methods and Example Results[J]. Sedimentology, 2013, 60(6):1526-1558.
[86] 单敬福.河流相储层构型方法[M].北京:科学出版社, 2016:192-230. Shan Jingfu. Method of Fluvial Reservoir Architecture[M]. Beijing:Science Press, 2016:192-230.
[87] Sun D H, Bloemendal J, Rea D K, et al. Grain-Size Distribution Function of Polymodal Sediments in Hydraulic and Aeolian Environments, and Numerical Partitioning of the Sedimentary Components[J]. Sedimentary Geology, 2002, 152:263-277.
[88] 张存勇.海州湾近岸海域现代沉积动力环境[M].北京:海洋出版社, 2015:76-85. Zhang Cunyong. Modern Depositional Dynamic Environment in the Coastal Waters of Haizhou Bay[M]. Beijing:Ocean Press, 2015:76-85.
[89] 朱永进,尹太举,沈安江,等.鄂尔多斯盆地上古生界浅水砂体沉积模拟实验研究[J].天然气地球科学, 2015, 26(5):833-844. Zhu Yongjin, Yin Taiju, Shen Anjiang, et al. Experiments on Shallow-Lacustrine Deltaic Sandstone in the Ordos Basin(Upper Paleozoic), Central China[J]. Natural Gas Geoscience, 2015, 26(5):833-844.
[90] 张昌民,朱锐,赵康,等.从端点走向连续:河流沉积模式研究进展述评[J].沉积学报, 2017, 35(5):926-944. Zhang Changmin, Zhu Rui, Zhao Kang, et al. From End Member to Continuum:Review of Fluvial Facies Model Research[J]. Acta Sedimentologica Sinica, 2017, 35(5):926-944.
[91] Lepold L B. Fluvial Processes in Geomorphology[M]. New York:Dover Publications, 1964:298-308.
[92] Bridge J S, Tye R S. Interpreting the Dimensions of Ancient Fluvial Channel Bars, Channels, and Channel Belts from Wireline-Logs and Cores[J]. AAPG Bulletin, 2000, 84(8):1205-1228.
[93] Lorenz J C, Clark J A, Heinze D M, et al. Determination of Widths of Meander-Belt Sandstone Reservoirs from Vertical Downhole Data, Mesaverde Group, Piceance Creek Basin, Colorado[J]. AAPG Bulletin, 1985, 69(5):710-721.
[94] 吴胜和,岳大力,刘建民,等.地下古河道储层构型的层次建模研究[J].中国科学:D辑:地球科学, 2008, 38(增刊1):111-121. Wu Shenghe, Yue Dali, Liu Jianmin, et al. Research on Hierarchical Modeling of Underground Ancient Channel Reservoir Configuration[J]. Science in China:Series D:Earth Science, 2008, 38(Sup.1):111-121.
[95] 周银邦,吴胜和,计秉玉,等. 曲流河储层构型表征研究进展[J].地球科学进展, 2011, 26(7):695-702. Zhou Yinbang, Wu Shenghe, Ji Bingyu, et al. Research Progress on the Characterization of Fluvial Reservoir Architecture[J]. Advance in Earth Science, 2011, 26(7):695-702.
[96] Rust B R,Legun A S.澳大利亚中部现代干旱的网状河流沉积和加拿大新不伦瑞克一处石炭系的类比[M]//Collinson J D,Lewin J.现代和古代河流沉积体系. 裘亦楠,甘克文,许仕策,等译.北京:石油工业出版社, 1991:264-272. Rust B R, Legun A S.Modern Anastomosing-Fluvial Deposits in Arid Central Australia, and a Carboniferous Analogue in New Brunswick, Canada[M]//Collinson J D, Lewin J. Modern and Ancient Fluvial Systems.Translated by Qiu Yinan, Gan Kewen, Xu Shice, et al. Beijing:Petroleum Industry Press, 1991:264-272.
[97] 刘君龙,纪友亮,杨克明,等.川西地区中侏罗世前陆盆地河流层序结构及控制因素[J].天然气地球科学, 2017, 28(1):14-25. Liu Junlong, Ji Youliang, Yang Keming, et al. Sequence Architecture and Its Controlling Factors of Middle Jurassic Fluvial Successions in Western Sichuan Foreland Basin[J]. Natural Gas Geoscience, 2017, 28(1):14-25.
[98] Spearing D R. Summary Sheets of Sedimentary Deposits with Bibliographies[M]. Boulder:The Geological Society of America, Inc, 1974:1-7.
[99] 印森林,刘忠保,陈燕辉,等.冲积扇研究现状及沉积模拟实验:以碎屑流和辫状河共同控制的冲积扇为例[J].沉积学报, 2017, 35(1):10-23. Yin Senlin, Liu Zhongbao, Chen Yanhui, et al. Research Progress and Sedimentation Experiment Simulation About Alluvial Fan:A Case Study on Alluvial Fan Controlled by Debris Flow and Braided River[J]. Acta Sedimentologica Sinica, 2017, 35(1):10-23.
[100] 张阳,蔡明俊,芦凤明,等.碎屑-牵引流控冲积扇储层构型特征及模式:以沧东凹陷小集油田为例[J].中国矿业大学学报, 2019, 48(3):538-552. Zhang Yang, Cai Mingjun, Lu Fengming, et al.Reservoir Architecture Characteristics and Mode of Middle and Edge Alluvial Fan Controlled by Debris flow and Traction Flow:A Case Study of Xiaoji Oilfield, Cangdong Sag[J]. Journal of China University of Mining & Technology, 2019, 48(3):538-552.
[101] Jones S J, Arzani N, Allen M B. Tectonic and Climatic Controls on Fan Systems:The Kohrud Mountain Belt, Central Iran[J]. Sedimentary Geology, 2014, 302:29-43.
[102] 杜威.基于卫星影像的三角洲规模和形态认知[J].中国石油大学胜利学院学报, 2017, 31(1):15-17. Du Wei. Recognition of Delta Size and Shape Based on Satellite Images[J]. Journal of Shengli College China University of Petroleum, 2017, 31(1):15-17.
[103] 陈戈,斯春松,张惠良,等.扇三角洲砂体几何形态沉积数值模拟方法研究[J].地质学刊, 2013, 37(2):178-182. Chen Ge, Si Chunsong, Zhang Huiliang, et al. Study on Sedimentary Numerical Simulation Method of Fan Delta Sand Body[J]. Journal of Geology, 2013, 37(2):178-182.
[104] 张明书. 西沙生物礁碳酸盐沉积地质学研究[M].北京:科学出版社, 1989:7-15. Zhang Mingshu. Researches on Carbonate Sedimentary Geology of Xisha Reefs[M]. Beijing:Science Press, 1989:7-15.
[105] Purkis S J. Remote Sensing Tropical Coral Reefs:The View from Above[J]. Annual Review of Marine Science, 2018, 10:149-168.
[106] 倪新锋,沈安江,韦东晓,等.碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J].天然气地球科学, 2018, 29(5):729-742. Ni Xinfeng, Shen Anjiang, Wei Dongxiao, et al. Current Hot Topics and Advances of Carbonate Sedimentology:AAPG 100 Anniversary and 2017 Annual Meeting and Exhibition[J]. Natural Gas Geoscience, 2018, 29(5):729-742.
[107] 杨孝群,李忠.微生物碳酸盐岩沉积学研究进展:基于第33届国际沉积学会议的综述[J].沉积学报, 2018, 36(4):639-650. Yang Xiaoqun, Li Zhong. Research Progress in Sedimentology of Microbial Carbonate Rocks:A Review Based on the 33rd International Sedimentological Congress[J]. Acta Sedimentologica Sinica, 2018, 36(4):639-650.
[108] Riding R. Microbial Carbonates:The Geological Record of Calcified Bacterial-Algal Mats and Biofilms[J]. Sedimentology, 2000, 47(Sup.1):179-214.
[109] Mettraux M, Homewood P, Anjos C D, et al. Microbial Communities and Their Primary to Early Diagenetic Mineral Phases; the Record from Neoproterozoic Microbialites of Qarn Alam,Oman[J]. The Geological Society, London, Special Publications, 2015, 418:123-154.
[110] Theisen C H, Sumner D Y. Thrombolite Fabrics and Origins:Influences of Diverse Microbial and Metazoan Processes on Cambrian Thrombolite Variability in the Great Basin, California and Nevada[J]. Sedimentology, 2016, 63(7):2217-2252.
[111] 肖传桃,吴彭珊,李沫汝,等.湖北松滋地区下奥陶统叠层石沉积特征[J].沉积学报, 2018, 36(5):853-863. Xiao Chuantao, Wu Pengshan, Li Moru, et al. Sedimentary Characteristics of Lower Ordovician Stromatolites in Songzi Area, Hubei Province[J]. Acta Sedimentologica Sinica, 2018, 36(5):853-863.
[112] 常玉光,齐永安,郑伟,等.叠层石微生物席生态系研究进展[J].河南理工大学学报(自然科学版), 2013(3):356-364. Chang Yuguang, Qi Yong'an, Zheng Wei, et al. Research Progress on Microbial Mat Ecosystem of Stromatolites[J]. Journal of Henan Polytechnic University (Natural Science), 2013(3):356-364.
[113] 温志峰,钟建华,李勇,等.柴达木盆地中新世叠层石成因与古环境研究[J].西北地质, 2005, 38(2):40-48. Wen Zhifeng, Zhong Jianhua, Li Yong, et al. Study on Miocene Stromatolites Genesis and Related Paleo-Environment in Qaidam Basin[J]. Northwestern Geology, 2005, 38(2):40-48.
[114] Wilson J L. Carbonate Facies in Geologic History[M]. Berlin:Springer-Verlag, 1975:1-471.
[115] Hill J. Modelling of Reefs and Shallow Marine Carbonates[D]. Edinburgh:The University of Edinburgh, 2008.
[116] Oslege D A, Barnaby R, Kerans C, et al. A Laterally Accreting Grainstone Margin from the Albian of Northern Mexico:Outcrop Model for Cretaceous Carbonate Reservoirs[J]. AAPG Memoir, 2005,80:93-107.
[117] Smith J L B, Eberli G P, Sonnenfeld M, et al. Sequence-Stratigraphic and Paleogeographic Distribution of Reservoir-Quality Dolomite, Madison Formation, Wyoming and Montana[J]. AAPG Memoir,2005,80:67-92.
[118] Purkis S J, Harris P M. Quantitative Interrogation of a Fossilized Carbonate Sand Body:The Pleistocene Miami Oolite of South Florida[J]. Sedimentology, 2017, 64:1439-1464.
[1] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[2] 陈秀艳, 王剑, 张立平, 马德波, 周波. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(2): 509-517.
[3] 张子军, 奥琮, 严城民, 杨宇, 郎维雄, 洪鑫科, 杜磊, 李新仁. 老挝华潘省香科菱镁矿地质特征与成因分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 85-96.
[4] 张鹏辉, 张小博, 方慧, 王小江, 刘建勋. 地球物理资料揭示的嫩江—八里罕断裂中段深浅构造特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 261-272.
[5] 林松, 王薇, 邓小虎, 查雁鸿, 周红伟, 程邈. 三峡库区典型滑坡地质与地球物理电性特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 273-284.
[6] 魏恒飞, 陈践发, 陈晓东. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1507-1517.
[7] 赵迎冬. 流体包裹体中盐度分析与应用——以福山凹陷为例[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1261-1269.
[8] 李洪英, 杨磊, 陈剑锋. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1285-1300.
[9] 杨细浩, 胡文洁, 钟起泓, 朱昌杰, 万欢, 胡正华. 江西东坪石英脉型黑钨矿矿床地质特征、控矿因素及找矿标志[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1301-1316.
[10] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[11] 王昱翔, 顾忆, 傅强, 王斌, 万旸璐, 李映涛. 顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因[J]. 吉林大学学报(地球科学版), 2019, 49(4): 932-946.
[12] 周翔. 松辽盆地北部营城组火山岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1001-1014.
[13] 曹阳, 申月芳, 焦志亮, 翟远征, 杨耀栋. 中新天津生态城孔隙水化学垂向分布及其成因[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1109-1120.
[14] 孙章庆, 汪登科, 韩复兴. 复杂海底各种地震波的射线追踪与运动学特征[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1169-1181.
[15] 鄢伟, 张光学, 樊太亮, 夏斌, 高志前, 张莉, 杨振, 强坤生. 塔里木盆地塔中—顺托果勒地区奥陶系良里塔格组碳酸盐岩颗粒滩沉积特征[J]. 吉林大学学报(地球科学版), 2019, 49(3): 621-636.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!