吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 979-990.doi: 10.13278/j.cnki.jjuese.20190131

• 地质与资源 • 上一篇    

鄂尔多斯盆地Y区块长6致密油层裂缝特征

康立明1,2, 任战利1, 张林3, 魏斌2, 王武兵2   

  1. 1. 西北大学地质学系/西北大学大陆动力学国家重点实验室, 西安 710069;
    2. 延长集团国际勘探公司, 西安 710075;
    3. 中石油川庆钻探工程技术研究院, 西安 710021
  • 收稿日期:2019-06-27 发布日期:2020-07-29
  • 作者简介:康立明(1973-),男,高级工程师,在站博士后,主要从事油田开发和石油地质综合方面的研究,E-mail:362349216@qq.com
  • 基金资助:
    国家自然科学基金项目(41630312);国家科技重大专项(2017ZX05005-002-008)

Fracture Characteristics of Chang 6 Tight Oil Reservoir in Block Y in Ordos Basin

Kang Liming1,2, Ren Zhanli1, Zhang Lin3, Wei Bin2, Wang Wubing2   

  1. 1. Department of Geology/State Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China;
    2. Shaanxi Yanchang Petroleum International Exploration & Development Engineering Co., Ltd., Xi'an 710075, China;
    3. CNPC Chuan-Qing Research Institute of Drilling Engineering Technology, Xi'an 710021, China
  • Received:2019-06-27 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China(41630312) and National Science and Technology Major Project (2017ZX05005-002-008)

摘要: 长6致密油层是鄂尔多斯盆地Y区块的主力产层,裂缝发育。目前单井产能低,水淹和水窜现象严重,部分水井注水困难,严重影响了开发效果。为了解决影响开发效果较为严重的裂缝问题,本文通过野外露头和岩心宏观、微观观察,注水指示曲线和压力降落试井资料分析,应力测定,停泵压力梯度与上覆应力梯度关系研究,结合沉积环境,对天然裂缝、人工裂缝发育特征,人工裂缝影响因素,天然裂缝对人工裂缝性质的影响、人工裂缝形态及分布规律等方面进行研究。结果表明:研究区长6油层宏观裂缝主要是以垂直缝为主的区域性构造裂缝,微裂缝主要是以水平缝为主的成岩缝;人工裂缝主要受控于天然裂缝,天然裂缝主要受控于砂体厚度与泥质体积分数,砂体厚度越薄越易形成天然裂缝,泥质体积分数越高越易形成变形构造。

关键词: 鄂尔多斯盆地, 长6, 致密油层, 裂缝特征

Abstract: Chang 6 is the main producing layer of Y block in Ordos basin, and cracks are developed. At present, the productivity of single well is low, water flooding and water channeling are serious, and some wells are seriously affected. In order to solve the fracture problem,the authors studied the development characteristics of natural fractures and artificial fractures, the influencing factors of artificial fractures, and the influencing factors of natural fractures on artificial fractures through the macroscopic and microcosmic observation of outcrops and cores in the field, the analysis of water injection indication curve, the analysis of pressure drop test data, the measurement of stress, and the analysis of the relationship between the pressure gradient of pump stop and the overlying stress gradient. Combined with the sedimentary environment, the influence of artificial fracture properties, artificial fracture form, and distribution law were studied. The results show that the macro-fractures of Chang 6 oil reservoir are mainly vertical regional structures, while the micro-fractures are mainly horizontal diagenetic fractures. The artificial fractures are mainly controlled by natural fractures, and the natural fractures are mainly controlled by the thickness and shale content of sand body. The thinner the sand body is, the easier the natural fracture is to form, the higher the shale content is, the easier the deformation structure is to form.

Key words: Ordos basin, Chang 6, tight oil reservoir, fracture characteristics

中图分类号: 

  • TE348
[1] 路向伟,杜书恒,郑奎,等.鄂尔多斯盆地靖安地区延长组储层有效开发的应力判据[J].北京大学学报(自然科学版)2018, 54(3):573-578. Lu Xiangwei,Du Shuheng, Zheng Kui, et al. Stress Criterion of Effective Development on Yanchang Formation Reservoir in Jing'an Area, Ordos Basin[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(3):573-578.
[2] 万晓龙, 高春宁, 王永康, 等. 人工裂缝与天然裂缝耦合关系及其开发意义[J].地质力学学报, 2009,15(3):245-252. Wan Xiaolong,Gao Chunning,Wang Yongkang, et al.Coupled Relationship Between and Natural Fractures and Its Implication to Development[J].Journal of Geomechanics, 2009,15(3):245-252.
[3] 梁兵,王焕弟. 储层微裂缝预测技术[J]. 石油地球物理勘探,2003,38(4):400-404. Liang Bing,Wang Huandi.Prediction of Micro-Fractures in Reservoir[J]. Oil Geophysical Prospecting, 2003,38(4):400-404.
[4] 周新桂,邓宏文,操成杰,等. 储层构造裂缝定量预测研究及评价方法[J]. 地球学报,2003,24(2):175-180. Zhou Xingui,Deng Hongwen,Cao Chengjie, et al. The Methods for Quantitative and Evaluation of Structural Fissures in Reservoirs[J].Acta Geoscientia Sinica, 2003,24(2):175-180.
[5] 谢刚,罗利,刘向君,等. 利用测井资料预测水平井压裂裂缝形态[J].测井技术,2017,41(5):590-595. Xie Gang, Luo li, Liu Xiangjun, et al. Predicting the Shape of Hydraulic Fracture of Shale Gas Horizontal Well in Sichuan with Log Data[J].Well Logging Technology, 2017,41(5):590-595.
[6] Taleghani A D.Fracture-Initiation as a Possible Branching Mechanism During Hydraulic Fracturing[C]//ARMA10-278.Salt Lake City:American Rock Mechanics Association,2010:1-7.
[7] Olson J E.Multi-Fracture Propagation Modeling:Applications to Hydraulic Fracturing in Shales and Tight Gas Sands[C]//ARMA 08-327.Salt Lake City:American Rock Mechanics Association,2008:1-8.
[8] Weng X,Kresse O,Cohen C.Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation[J]. SPE Prodution & Operations,2011,26(4):368-380.
[9] Prioul R, Jeroen J. Fracture Characterization at Multiple Scales Usingborehole Images, Sonic Logs, and Walkaround Vertical Seismicprofile[J]. AAPG Bulletin, 2009, 93(11):1503-1516.
[10] Laubach S, Olson J, Gross M. Mechanical and Fracture Stratigraphy[J]. AAPG Bulletin, 2009, 93(11):1413-1426.
[11] 周新桂,张林炎,黄臣军,等.华庆地区长63储层裂缝分布模型与裂缝有效性[J]. 吉林大学学报(地球科学版),2012, 42(3):689-697. Zhou Xingui,Zhang Linyan,Huang Chenjun, et al. Distraction Network Conceptual Model and Validity of Fractures in Chang 63 Low Permeable Reservoir in Huaqing Area[J].Journal of Jilin University(Earth Science Edition),2012, 42(3):689-697.
[12] 孙庆和,何玺,李长禄. 特低渗透储层微缝特征及对注水开发效果的影响[J]. 石油学报,2000,21(4):52-57. Sun Qinghe,He Xi,Li Changlu.The Effects of Microfractures for Development the Lowest Permeability Reservior in Water Injection[J]. Acta Petrolei Sinica,2000,21(4):52-57.
[13] 曾联波. 低渗透砂岩油气储层裂缝及其渗流特征[J]. 地质科学,2004,39(1):11-17. Zeng Lianbo. Fissure and Its Seepage Characteristics in Low-Permeable Sandstone Reservoir[J].Chinese Journal of Geology, 2004,39(1):11-17.
[14] 王震,丁辉.延安地区长6油层组裂缝特征研究[J]. 西北大学学报(自然科学版), 2006, 36(1):125-128. Wang Zhen,Ding Hui. The Characteristics of Fractures of Chang 6 Oil-Bearing of Yanchang Formation in Yan'an Aera and Its Effect on Development of Watering[J]. Journal of Northwest University(Natural Science Edition), 2006, 36(1):125-128.
[15] 张莉,杨亚娟,张玉玲,等. 陕甘宁盆地川口油田低渗透油藏长6油层裂缝特征[J]. 西北地质,2002,35(2):41-45. Zhang Li,Yang Yajuan,Zhang Yuling, et al. Characteristics of Fractures of Chang6 Low-Permeability Reservoir,in Chuankou Oil Field,Shan-Gan-Ning Basin[J].Northwestern Geology, 2002, 35(2):41-45.
[16] 徐苏欣, 林加恩,成绥民. 压裂井压力恢复试井的典型曲线直接综合分析技术[J]. 油气井测试,2000, 9(2):9-14. Xu Suxin,Lin Jiaen,Cheng Suimin. Direct Comprehensive Analysis Technique for Pressure Build-Up Well Testing Type Curve of Fractured Wells[J]. Well Testing, 2000, 9(2):9-14.
[17] 宋惠珍,曾海容,孙君秀,等. 储层构造裂缝预测方法及其应用[J].地震地质,1999,21(3):205-212. Song Huizhen,Zeng Hairong,Sun Junxiu,et al.Methods of Reservoir Tectonic Fracture Prediction and Its Application[J].Seismology and Geology, 1999,21(3):205-212.
[18] 吉德利J L.水力压裂技术新进展[M]. 蒋阗,单文文译.北京:石油工业出版社,1995:20-80. Gidley J L. New Progress in Hydraulic Fracturing Technology[M]. Translated by Jiang Tian, Shan Wenwen.Beijing:Petroleum Industry Press, 1995:20-80.
[19] 康义逵, 任文清,朱用斌. 极值主曲率法预测天然裂缝发育带的方法与实践[J]. 油气井测试, 2002,11(4):22-26. Kang Yikui,Ren Wenqing,Zhu Yongbin.Method and Practice of the Extremum Main Curvity Forecasting Natural Fracture Zones[J]. Well Testing, 2002,11(4):22-26.
[20] Smith M B,Nolte K G. Stim Plan Software Training Material (Electronic Version)[R]. Houston:Nolte Smith Company,2005.
[21] 周望, 何师荣,赵重生.大庆油田压裂裂缝形态及特征[J].石油勘探与开发,1982,9(3):66-71. Zhou Wang,He Shirong,Zhao Zhongsheng. Fracture Patterns Under Well Stimulation Operations and Their Characteristics in Daqing Oil Field[J].Petroleum Exploration and Development, 1982,9(3):66-71.
[22] 赵永胜,王秀娟,兰玉波,等.关于压裂裂缝形态模型的讨论[J].石油勘探与开发,2001,28(6):97-98. Zhao Yongsheng,Wang Xiujuan,Lan Yubo, et al.Discussion on the Model of Induced Fracture Geometry[J]. Petroleum Exploration and Development, 2001,28(6):97-98.
[23] 刘向君,罗平亚. 岩石力学与石油工程[M].北京:石油工业出版社,2004:80-170. Liu Xiangjun, Luo Pingya. Rock Mechanics and Petroleum Engineering[M]. Beijing:Petroleum Industry Press, 2004:80-170.
[1] 崔景伟, 朱如凯. 致密砂岩层内强钙质胶结物成因机制及其意义——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 吉林大学学报(地球科学版), 2020, 50(4): 957-967.
[2] 王付勇, 程辉. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征[J]. 吉林大学学报(地球科学版), 2020, 50(3): 721-731.
[3] 张雷, 樊洪波, 侯伟, 张伟, 郝帅, 孙晓光. 煤层气井产出剖面测试技术及应用[J]. 吉林大学学报(地球科学版), 2020, 50(2): 617-626.
[4] 李向东, 何幼斌. 宁夏香山群徐家圈组顶部石灰岩稀土元素特征与沉积介质分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 139-157.
[5] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[6] 李红进, 张道勇, 葛云锦, 王翊超, 徐刚. 甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539.
[7] 王朝, 王冠民, 杨清宇, 胡津, 何为, 石晓明, 张婕. 吴起—志丹地区延长组下组合浊沸石的纵向分布特征与成因[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1247-1260.
[8] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[9] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[10] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[11] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[12] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[13] 田亚, 杜治利, 刘宝宪, 杜小弟, 陈夷. 鄂尔多斯盆地东南部宜川黄龙地区奥陶系风化壳储层发育特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1620-1630.
[14] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[15] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!