吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1289-1303.doi: 10.13278/j.cnki.jjuese.20190287

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据

李洪梁1, 李光明2,3, 丁俊2,3, 张志2, 卿成实2, 付建刚2, 凌晨2,3, 刘宇奇2,3   

  1. 1. 中国地质科学院探矿工艺研究所, 成都 611734;
    2. 中国地质调查局成都地质调查中心, 成都 610081;
    3. 成都理工大学地球科学学院, 成都 610059
  • 收稿日期:2019-11-20 出版日期:2020-09-26 发布日期:2020-09-29
  • 通讯作者: 李光明(1965-),男,研究员,博士,主要从事青藏高原区域与矿产地质方面的研究,E-mail:li-guangming@163.com E-mail:li-guangming@163.com
  • 作者简介:李洪梁(1990-),男,博士研究生,主要从事青藏高原地质矿产勘查评价方面的研究,E-mail:siliang2222@126.com
  • 基金资助:
    国家自然科学基金项目(41702080,91955208,41602214);中国地质调查局项目(DD20190644,DD20190147);国家科学技术部科技支撑计划重点项目(2016YFC060308,2018YFC0604103)

Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet: Evidence from in Situ S Isotopes of Sulfides

Li Hongliang1, Li Guangming2,3, Ding Jun2,3, Zhang Zhi2, Qing Chengshi2, Fu Jiangang2, Ling Chen2,3, Liu Yuqi2,3   

  1. 1. Institute of Exploration Technology, Chinese Academy of Geological Sciences, Chengdu 611734, China;
    2. Chengdu Center, China Geological Survey, Chengdu 610081, China;
    3. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China
  • Received:2019-11-20 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by National Natural Science Foundation of China (41702080, 91955208, 41602214), Project of China Geological Survey (DD20190644, DD20190147), Key Project of Science and Technology Support Program of the Ministry of Science and Technology of China (2016YFC060308, 2018YFC0604103)

摘要: 藏南扎西康铅锌多金属矿床是特提斯喜马拉雅构造带(TH)东段发现的首个大型铅锌矿床,但其成因备受争议。本文在详细研究矿床地质特征的基础上,对矿硐内具有"同心环带"或"热水蛋"构造的铅锌矿石中的黄铁矿、方铅矿和闪锌矿进行了原位微区硫同位素分析。结果显示:铅锌矿石硫同位素组成变化范围在8.88‰~11.83‰之间,平均为10.50‰,总硫同位素组成(δ34S∑S)约为10.07‰。其中:7个黄铁矿(Py)测点的δ34SPy值为10.29‰~11.14‰,平均为10.70‰;6个闪锌矿(Sp)测点的δ34SSp值为10.78‰~11.83‰,平均为11.49‰;5个方铅矿(Gn)测点的δ34SGn值为8.88‰~9.18‰,平均为9.04‰。总体表现为δ34SSp > δ34SPy > δ34SGn,指示硫同位素未达到分馏平衡。利用方铅矿与闪锌矿矿物对硫同位素温度计计算可得,铅锌成矿温度介于224~280℃之间,平均值为259℃。结合前人研究成果,进一步得出扎西康铅锌多金属矿床主成矿期硫源主要来自日当组(J1r)围岩地层,并可能有少量岩浆硫的混入,属受控于地层-构造-岩浆热液作用的中温热液矿床。

关键词: 原位硫同位素, 矿床成因, 中温热液矿床, 扎西康铅锌多金属矿床, 藏南

Abstract: Zhaxikang Pb-Zn polymetallic deposit is the first large-scale Pb-Zn deposit discovered in the eastern Tethys Himalaya (TH), but its genesis is still controversial. Based on the detailed study of the geological characteristics, the authors analyzed the in situ S isotope of pyrite, galena, and sphalerite in the Pb-Zn ore with "concentric ring zone" or "hot water egg" structure in the mine chamber. The results of in situ S isotopic analysis show that the isotopic composition of Pb-Zn ore varies from 8.88‰ -11.83‰, with an average of 10.50‰, and the total sulfur isotopic composition (δ34S∑S) is about 10.07‰. Among them, the δ34SPy of seven pyrite measuring points is 10.29‰-11.14‰, with an average of 10.70‰;the δ34SSp of six sphalerite measuring points is 10.78‰-11.83‰, with an average of 11.49‰;and the δ34SGn of five galena measuring points is 8.88‰-9.18‰, with an average of 9.04‰. It shows a trend of δ34SSp > δ34SPy > δ34SGn, indicating a status of fractionation disequilibrium. Using S isotope thermometer between galena and sphalerite, the Pb-Zn mineralization temperature is constrained between 224 ℃ and 280 ℃ with an average of 259 ℃. Combined with the results of previous studies, it is concluded that the sulfur source of Zhaxikang Pb-Zn polymetallic deposit is mainly from the surrounding strata of Ridang Formation (J1r) with minor magma sulfur, and Zhaxikang Pb-Zn polymetallic deposit belongs to the filling metasomatic mesothermal deposit controlled by the stratigraphic, tectonic and magmatic hydrothermal processes.

Key words: in situ S isotopes, deposit genesis, mesothermal hydrothermal deposit, Zhaxikang Pb-Zn polymetallic deposit, southern Tibet

中图分类号: 

  • P59
[1] 聂凤军,胡朋,江思宏,等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 79(3):373-385. Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 79(3):373-385.
[2] 吴建阳,李光明,周清,等. 藏南扎西康整装勘查区成矿体系初探[J]. 中国地质, 2015, 42(6):1674-1683. Wu Jianyang, Li Guangming, Zhou Qing, et al. A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet[J]. Geology in China, 2015, 42(6):1674-1683.
[3] 谢玉玲,杨科君,李应栩,等. 藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源[J]. 地球科学, 2019, 44(6):1998-2016. Xie Yuling, Yang Kejun, Li Yingxu, et al. Mazhala Gold-Antimony Deposit in Southern Tibet:The Characteristics of Ore-Forming Fluids and the Origin of Gold and Antimony[J]. Earth Science, 2019, 44(6):1998-2016.
[4] 李洪梁,李光明,李应栩,等. 藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征[J]. 矿物学报, 2017, 37(6):684-696. Li Hongliang, Li Guangming, Li Yingxu, et al. A Study on Ore Geological Characteristics and Fluid Inclusions of Jienagepu Gold Deposit in Zhaxikang Ore Concentration District, Southern Tibet, China[J]. Acta Mineralogica Sinica, 2017, 37(6):684-696.
[5] 李光明,张林奎,焦彦杰,等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008.
[6] 杨竹森,侯增谦,高伟,等. 藏南拆离系锑金成矿特征与成因模式[J]. 地质学报, 2006, 80(9):1377-1391. Yang Zhusen, Hou Zengqian, Gao Wei, et al. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System[J]. Acta Geologica Sinica, 2006, 80(9):1377-1391.
[7] 李金高,王全海,陈健坤,等. 西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究[J]. 成都理工学院学报, 2002, 29(5):533-538. Li Jingao, Wang Quanhai, Chen Jiankun, et al. Studyof Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet[J]. Journal of Chengdu University of Technology, 2002, 29(5):533-538.
[8] 孟祥金,杨竹森,戚学祥,等. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J]. 岩石学报, 2008, 24(7):1649-1655. Meng Xiangjin, Yang Zhusen, Qi Xuexiang, et al. Silicon-Oxygen-Hydrogen Isotopic Compositions of Zhaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure[J]. Acta Petrologica Sinica, 2008, 24(7):1649-1655.
[9] 张建芳,郑有业,张刚阳,等. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J]. 地球科学:中国地质大学学报, 2010, 35(6):1000-1010. Zhang Jianfang, Zheng Youye, Zhang Gangyang, et al. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(6):1000-1010.
[10] 王晓曼,李及秋,张学良,等. 西藏扎西康铅锌锑多金属矿地质特征及矿床成因探讨[J]. 矿产与地质, 2011, 25(4):273-279. Wang Xiaoman, Li Jiqiu, Zhang Xueliang, et al. Geological Features and Genesis of the Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Tibet[J]. Mineral Resources and Geology, 2011, 25(4):273-279.
[11] 郑有业,刘敏院,孙祥,等. 西藏扎西康锑多金属矿床类型、发现过程及意义[J]. 地球科学:中国地质大学学报, 2012, 37(5):1003-1014. Zheng Youye, Liu Minyuan, Sun Xiang, et al. Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet[J].Earth Science:Journal of China University of Geosciences, 2012, 37(5):1003-1014.
[12] 王艺云,唐菊兴,郑文宝,等. 西藏隆子县扎西康锌多金属矿床矿石组构研究及成因探讨[J]. 地球学报, 2012, 33(4):681-692. Wang Yiyun, Tang Juxing, Zheng Wenbao, et al. A Tentative Discussion on Ore Fabric and Genesis of the Zhaxikang Zn-Polymetallic Deposit, Lhunze County, Tibet[J]. Acta Geoscientica Sinica, 2012, 33(4):681-692.
[13] 梁维,杨竹森,郑远川. 藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J]. 地质学报, 2015, 89(3):560-568. Liang Wei, Yang Zhusen, Zheng Yuanchuan. The Zhaxikang Pb-Zn Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance[J]. Acta Geologica Sinica, 2015, 89(3):560-568.
[14] Wang D, Sun X, Zheng Y, et al. Two Pulses of Mineralization and Genesis of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Constraints from Fe-Zn Isotopes[J]. Ore Geology Reviews, 2017, 84:347-363.
[15] Liang J, Sun W, Zhu S, et al. Mineralogical Study of Sediment-Hosted Gold Deposits in the Yangshan Ore Field, Western Qinling Orogen, Central China[J]. Journal of Asian Earth Sciences, 2014, 85:40-52.
[16] 周伶俐,曾庆栋,孙国涛,等. LA-ICP-MS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 2019, 35(7):1964-1978. Zhou Lingli, Zeng Qingdong, Sun Guotao, et al. Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Elemental Mapping and Its Applications in Ore Geology[J]. Acta Petrologica Sinica, 2019, 35(7):1964-1978.
[17] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.
[18] 潘桂棠,肖庆辉,陆松年,等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1):1-28. Pan Guitang, Xiao Qinghui, Lu Songnian, et al. Subdivision of Tectonic Units in China[J]. Geology in China, 2009, 36(1):1-28.
[19] Zhu D C, Chung S L, Mo X X, et al. The 132 Ma Comei-BunburyLarge Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia[J]. Geology, 2009, 37(7):583-586.
[20] 张林奎,张志,李光明,等. 特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因[J]. 地球科学, 2018, 43(8):2664-2683. Zhang Linkui, Zhang Zhi, Li Guangming, et al. Rock Assemblage,Structural Characteristics and Genesis Mechanism of the Cuonadong Dome,Tethys Himalaya[J]. Earth Science, 2018, 43(8):2664-2683.
[21] 高利娥,高家昊,赵令浩,等. 藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用[J]. 岩石学报, 2017, 33(8):2395-2411. Gao Li'e, Gao Jiahao, Zhao Linghao, et al. The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization[J]. Acta Petrologica Sinica, 2017, 33(8):2395-2411.
[22] 林彬,唐菊兴,郑文宝,等. 西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3):391-406. Lin Bin, Tang Juxing, Zheng Wenbao, et al. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet[J]. Acta Petrologica et Mineralogica, 2016, 35(3):391-406.
[23] 李洪梁,李光明,张志,等. 藏南扎西康铅锌多金属矿床控矿因素及找矿预测[J]. 金属矿山, 2016, 45(10):103-108. Li Hongliang, Li Guangming, Zhang Zhi, et al. Ore-Controlling Factors and Prospecting Prediction of Zhaxikang Pb-Zn Polymetallic Deposit, Southern Tibet[J]. Metal Mine, 2016, 45(10):103-108.
[24] Chen L, Chen K, Bao Z, et al. Preparation of Standards for in Situ Sulfur Isotope Measurement in Sulfide Using Femtosecond Laser Ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32:107-116.
[25] Bao Z, Lu C, Zong C, et al. Development of Pressed Sulfide Powder Tablets for in Situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2017, 421:255-262.
[26] Yuan H, Xu L, Lu C, et al. Simultaneous Measurement of Sulfur and Lead Isotopes in Sulfides Using Nanosecond Laser Ablation Coupled with Two Multi-Collector Inductively Coupled Plasma Mass Spectrometers[J]. Journal of Asian Earth Sciences, 2017, 154:386-396.
[27] 李关清. 西藏扎西康锑硫盐多金属矿床成矿机制与区域成矿潜力评价[D]. 北京:中国地质大学(北京), 2015. Li Guanqing. Metallogenetic Mechanism and Ore-Forming Potential Evaluation of the Zhaxikang Antimony (Sulfur Salts) Polymetallic Deposits in Tibet[D]. Beijing:China University of Geosciences (Beijing), 2015.
[28] 易继宁. 藏南扎西康式铅锌成矿作用与多元地学信息找矿预测研究[D]. 北京:中国地质大学(北京), 2017. Yi Jining. The Study of Mineralization and Multi-Information Prediction of Zhaxikang-Style Zn-Pb Deposit, Southern Tibet[D]. Beijing:China University of Geosciences (Beijing), 2017.
[29] 王达. 藏南扎西康锑铅锌银矿床同位素地球化学研究[D]. 北京:中国地质大学(北京), 2018. Wang Da. The Isotope Geochemistry Research of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet[D]. Beijing:China University of Geosciences (Beijing), 2018.
[30] Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits[J]. Economic Geology, 1972, 67:551-578.
[31] Ohmoto H, Rye R D. Isotopes of Sulfur and Carbon[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York:Wiley,1979:509-567.
[32] Seal R R. Sulfur Isotope Geochemistry of Sulfide Minerals[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1):633-677.
[33] Nickel E H. BondStrength and Sulfur Isotopic Fractionation in Coexisting Sulfides (Discussion)[J]. Economic Geology, 1969, 64(8):934-935.
[34] Pinckney D M, Rafter T A. Fractionation of Sulfur Isotopes During Ore Deposition in the Upper Mississippi Valley Zinc-Lead District[J]. Economic Geology, 1972, 67(3):315-328.
[35] 朱黎宽,顾雪祥,李关清,等. 藏南扎西康铅锌锑多金属矿床流体包裹体研究及地质意义[J]. 现代地质, 2012, 26(3):453-463. Zhu Likuan, Gu Xuexiang, Li Guanqing, et al. Fluid Inclusions in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, South Tibet, and Its Geological Significance[J]. Geoscience, 2012, 26(3):453-463.
[36] 李应栩,李光明,董随亮,等. 西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J]. 矿物岩石地球化学通报, 2015, 34(3):571-582. Li Yingxu, Li Guangming, Dong Suiliang, et al. Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit, Tibet, China[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(3):571-582.
[37] 梁维,郑远川,杨竹森,等. 藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J]. 岩石矿物学杂志, 2014, 33(1):64-78. Liang Wei, Zheng Yuanchuan, Yang Zhusen, et al. Multiphase and Polystage Metallogenic Process of the Zhaxikang Large-Size Pb-Zn-Ag-Sb Polymetallic Deposit in Southern Tibet and Its Implications[J]. Acta Petrologica et Mineralogica, 2014, 33(1):64-78.
[38] 卢焕章. 流体不混溶性和流体包裹体[J]. 岩石学报, 2011, 27(5):1253-1261. Lu Huanzhang. FluidsImmiscibility and Fluid Inclusions[J]. Acta Petrologica Sinica, 2011, 27(5):1253-1261.
[39] Ohmoto H. StableIsotope Geochemistry of Ore Deposits[J]. Reviews in Mineralogy and Geochemistry, 1986, 16(1):491-559.
[40] Xie Y, Wang B, Li Y, et al. Characteristics of Pegmatite-Related Fluids and Significance to Ore-Forming Processes in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, Tibet, China[J]. Acta Geologica Sinica (English Edition), 2015, 89(3):811-821.
[41] Xie Y, Li L, Wang B, et al. Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link[J]. Ore Geology Reviews, 2017, 80:891-909.
[42] 张政,唐菊兴,林彬,等. 藏南扎西康矿床闪锌矿微量元素地球化学特征及地质意义[J]. 矿物岩石地球化学通报, 2016, 35(6):1203-1216. Zhang Zheng, Tang Juxing, Lin Bin, et al. Geochemical Characteristics of Trace Elements of Sphalerite in the Zhaxikang Deposit, Southern Tibet, and Their Geological Significances[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2016, 35(6):1203-1216.
[43] Duan J, Tang J, Lin B. Zinc and Lead Isotope Signatures of the Zhaxikang Pb-Zn Deposit, South Tibet:Implications for the Source of the Ore-Forming Metals[J]. Ore Geology Reviews, 2016, 78:58-68.
[44] 郑文宝,丁帅,冷秋锋,等. 西藏扎西康矿区典型剖面岩石地球化学特征及地质意义[J]. 地质与勘探, 2017, 53(1):97-108. Zheng Wenbao, Ding Shuai, Leng Qiufeng, et al. Petrogeochemical Characteristics ofa Typical Cross-Section in the Zhaxikang Ore District of Tibet and Their Geological Significance[J]. Geology and Prospecting, 2017, 53(1):97-108.
[45] Zhou Q, Li W, Qing C, et al. Origin and Tectonic Implications of the Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Evidence from Structures, Re-Os-Pb-S Isotopes, and Fluid Inclusions[J]. Mineralium Deposita, 2017(Sup.2):1-16.
[46] 代鸿章,程文斌,李关清,等. 藏南扎西康Pb-Zn-Sb-Ag多金属矿床典型矿物标型研究[J]. 矿物学报, 2014, 34(1):72-82. Dai Hongzhang, Cheng Wenbin, Li Guanqing, et al. A Study on the Typomorphic Characteristics of Typical Mineral from Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2014, 34(1):72-82.
[47] Kampschulte, Strauss. The Sulfur Isotopic Evolution of Phanerozoic Seawater Based on the Analysis of Structurally Substituted Sulfate in Carbonates[J]. Chemical Geology, 2004, 204(3/4):255-286.
[48] 黄春梅,李光明,张志,等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J]. 地学前缘, 2018, 25(6):182-195. Huang Chunmei, Li Guangming, Zhang Zhi, et al.Petrogenesis of the Cuonadong Leucogranite in South Tibet:Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating[J]. Earth Science Frontiers, 2018, 25(6):182-195.
[49] 梁维,张林奎,夏祥标,等. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J]. 地球科学, 2018, 43(8):2742-2754. Liang Wei, Zhang Linkui, Xia Xiangbiao, et al. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China[J]. Earth Science, 2018, 43(8):2742-2754.
[50] 焦彦杰,黄旭日,李光明,等. 藏南扎西康矿集区深部结构与成矿:来自地球物理的证据[J]. 地球科学, 2019, 44(6):2117-2128. Jiao Yanjie, Huang Xuri, Li Guangming, et al. Deep Structure and Mineralization of Zhaxikang Ore-Concentration Area, South Tibet:Evidence from Geophysics[J]. Earth Science, 2019, 44(6):2117-2128.
[51] Molnar P, Tapponnier P. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision[J]. Science, 1975, 189:419-426.
[52] Leech M L, Singh S, Jain A K, et al. The Onset of India-Asia Continental Collision:Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya[J]. Earth & Planetary Science Letters, 2005, 234(1):83-97.
[53] Donaldson D G, Webb A A G, Menold C A, et al. Petrochronology of Himalayan Ultrahigh-Pressure Eclogite[J]. Geology, 2013, 41(8):835-838.
[54] 朱弟成,王青,赵志丹. 岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例[J]. 中国科学:地球科学, 2017, 47(6):657-673. Zhu Dicheng, Wang Qing, Zhao Zhidan, et al. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record:Method and Examples[J]. Science in China:Earth Science, 2017, 47(6):657-673.
[55] 侯增谦,杨竹森,徐文艺,等. 青藏高原碰撞造山带:I. 主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358. Hou Zengqian, Yang Zhusen, Xu Wenyi, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineralization in Main Collisional Orogenic Setting[J]. Mineral Deposits, 2006, 25(4):337-358.
[56] 侯增谦,潘桂棠,王安建,等. 青藏高原碰撞造山带:Ⅱ. 晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5):521-543. Hou Zengqian, Pan Guitang, Wang Anjian, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineralization in Late-Collisional Transformation Setting[J]. Mineral Deposits, 2006, 25(5):521-543.
[57] 侯增谦,曲晓明,杨竹森,等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651. Hou Zengqian, Qu Xiaoming, Yang Zhusen, et al. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting[J]. Mineral Deposits, 2006, 25(6):629-651.
[1] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[2] 张子军, 奥琮, 严城民, 杨宇, 郎维雄, 洪鑫科, 杜磊, 李新仁. 老挝华潘省香科菱镁矿地质特征与成因分析[J]. 吉林大学学报(地球科学版), 2020, 50(1): 85-96.
[3] 沈崇辉, 赵恩全. 安徽省笔架山绿松石矿床矿石矿物特征及矿床成因[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1591-1606.
[4] 代军治, 高菊生, 钱壮志, 张龙斌, 周金隆, 李平, 高毅. 小秦岭镰子沟金矿床地质特征、黄铁矿原位硫同位素组成及成因意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1669-1682.
[5] 吴猛, 李怡欣, 刘桂香. 黑龙江省老柞山金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1353-1364.
[6] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[7] 郝立波, 赵昕, 赵玉岩. 辽宁白云金矿床稳定同位素地球化学特征及矿床成因[J]. 吉林大学学报(地球科学版), 2017, 47(2): 442-451.
[8] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[9] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
[10] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[11] 曾令高, 张均, 孙腾, 李斌, 朱光辉, 贾子超, 方权, 陈庚户. 峨眉山大火成岩省烂纸厂铁矿床地质特征、成因及其找矿勘查启示[J]. 吉林大学学报(地球科学版), 2016, 46(2): 412-424.
[12] 韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 91-104.
[13] 王承洋, 王可勇, 周向斌, 李文, 黄广环, 李剑锋, 张雪冰, 于琪. 内蒙古东山湾钨钼多金属矿床成矿流体地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2015, 45(3): 759-771.
[14] 王力,潘忠翠,孙丽伟. 山东莱州新城金矿床流体包裹体[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1166-1176.
[15] 张国宾,杨言辰,王献忠,张志国,叶松青,李庆录,李向文,李海洋,王庆双. 黑龙江漠河县八里房金矿床地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1812-1827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323 -1339 .
[2] 付建刚, 李光明, 王根厚, 张林奎, 梁维, 张小琼, 焦彦杰, 董随亮. 西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1304 -1322 .