吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1304-1322.doi: 10.13278/j.cnki.jjuese.20190285

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代

付建刚1, 李光明1, 王根厚2, 张林奎1, 梁维1, 张小琼3, 焦彦杰1, 董随亮1   

  1. 1. 中国地质调查局成都地质调查中心, 成都 610081;
    2. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    3. 雅安市自然资源和规划局, 四川 雅安 625000
  • 收稿日期:2019-08-20 出版日期:2020-09-26 发布日期:2020-09-29
  • 通讯作者: 李光明(1965-),男,研究员,主要从事矿产资源勘查与评价、区域成矿规律与成矿预测方面的研究,E-mail:13982257109@163.com E-mail:13982257109@163.com
  • 作者简介:付建刚(1987-),男,博士,主要从事构造地质与成矿理论方面的研究,E-mail:fujiangangcd@163.com
  • 基金资助:
    国家自然科学基金项目(91955208,41602214);中国地质调查局项目(DD20190147);科学技术部第二次青藏高原综合科学考察研究(2019QZKK0806);国家科学技术部重大研发计划项目(2019YFC0605201,2018YFC0604103,2016YFC060308)

Syntectonic Skarn Characteristics and Mineralization Age of Associated Be-W-Sn Rare Metal Deposit in Cuonadong Dome, Southern Tibet, China

Fu Jiangang1, Li Guangming1, Wang Genhou2, Zhang Linkui1, Liang Wei1, Zhang Xiaoqiong3, Jiao Yanjie1, Dong Suiliang1   

  1. 1. Chengdu Center, China Geological Survey, Chengdu 610081, China;
    2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
    3. Bureau of Land and Resources Ya'an, Ya'an 625000, Sichuan, China
  • Received:2019-08-20 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by National Natural Science Foundation of China (91955208, 41602214), Project of China Geological Survey (DD20190147), Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0806) and Ministry of Science and Technology Program (2019YFC0605201, 2018YFC0604103, 2016YFC060308)

摘要: 错那洞穹窿位于北喜马拉雅片麻岩穹窿带(NHGD)的东段,是近年来新发现的穹窿构造。穹窿由内向外依次由核部、滑脱系和盖层三部分组成,错那洞铍钨锡稀有金属矿化主要赋存在穹窿滑脱系的矽卡岩和矽卡岩化大理岩中,矿体产在含石榴子石十字石云母片岩中,与强烈变形的淡色花岗岩或伟晶岩密切相关,部分矽卡岩矿物呈定向排列,具强烈的剪切特征;淡色花岗岩与矽卡岩的接触关系部分呈渐变接触,部分呈突变关系,表明矽卡岩与该期岩浆关系密切,矽卡岩与淡色花岗岩属于同构造的产物。本次研究获得错那洞穹窿滑脱系含石榴子石十字石云母片岩中黑云母Ar-Ar坪年龄为(16.6±0.3)Ma,反等时线年龄为(16.7±0.3)Ma,该年龄代表第二期由南向北伸展构造变形时间,即藏南拆离系(STDS)在错那洞穹窿的活动时间;含白云母的矽卡岩化大理岩中白云母Ar-Ar坪年龄为(16.9±0.2)Ma,与含石榴子石十字石云母片岩中黑云母Ar-Ar年龄一致,代表同构造矽卡岩的形成时间,也是错那洞铍钨锡稀有金属矿床的成矿时间。错那洞铍钨锡稀有金属矿床形成于由藏南拆离系强烈活动引起的伸展减薄构造背景,减压熔融形成的岩浆沿着构造通道上涌侵位,并与围岩交代反应形成同构造矽卡岩及其中的富铍钨锡矽卡岩型矿体。

关键词: 同构造矽卡岩, 稀有金属, Ar-Ar测年, 错那洞穹窿, 错那洞铍钨锡稀有金属矿床, 北喜马拉雅

Abstract: The newly discovered Cuonadong dome is located in the eastern part of the northern Himalayan gneiss domes (NHGD), which consists of three lithologic-tectonic units, i.e., core, detachment system,and cover rocks. Cuonadong super-large Be-W-Sn rare metals deposit is hosted by skarn and skarn marble in the middle of the dome. The skarn and/or skarnization marble are located in garnet-staurolite-bearing mica schist, and are closely related to the intensively deformed leucogranite and pegmatite, and some skarn minerals are in directional arrangement with strong shear characteristics (i.e. garnet, epidote and amphibole). The boundary between leucogranite and skarn is gradual or sharp, which suggests that both the skarn and the deformed leucogranite were resulted from the syntectonic magmatism.The Ar-Ar dating of biotite from the ore-hosting schist yields Ar-Ar plateau age of (16.6±0.3) Ma and inverse isochronal age of (16.7±0.3) Ma, which represent the age of D2 top-to north extension deformation, and also represent the activity time of the southern Tibetan detachment system (STDS) of Cuonadong dome. The Ar-Ar dating of muscovite from skarn in Cuonadong dome yields Ar-Ar plateau age of (16.9±0.2) Ma, which is consistent with the Ar-Ar plateau age of (16.6±0.3) Ma in schist, and represent the formation age of the syntectonic skarns, which is interpreted as the mineralization age of Cuonadong Be-W-Sn rare metals deposit. Therefore, we suggest that Cuonadong Be-W-Sn rare metals deposit was resulted from the activity of the STDS, and the syntectonic magma intruded in the host rocks along the structural passage, further replaced the marble, which, in turn, resulted in the formation of the Be-W-Sn-bearing skarn ore bodies.

Key words: syntectonic skarn, rare metals, Ar-Ar dating, Cuonadong dome, Cuonadong Be-W-Sn rare metals deposits, north Himalaya

中图分类号: 

  • P597
[1] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J].中国科学:地球科学,2017, 47(7):745-765. Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, et al. Highly Fractionated Granites:Recognition and Research[J]. Science China:Earth Sciences, 2017, 47(7):745-765.
[2] 吴福元, 刘志超, 刘小驰, 等. 喜马拉雅淡色花岗岩[J].岩石学报,2015, 31(1):1-36. Wu Fuyuan, Liu Zhichao, Liu Xiaochi, et al. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift[J]. Acta Petrologica Sinica,2015, 31(1):1-36.
[3] 曾令森, 刘静, 高利娥, 等. 藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义[J].科学通报,2009, 54(3):373-381. Zeng Lingsen, Liu Jing, Gao Li'e, et al. Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications[J]. Chinese Science Bulletin, 2009, 54(3):373-381.
[4] 高利娥, 曾令森, 石卫刚, 等. 喜马拉雅造山带新生代花岗岩中两类石榴子石的地球化学特征及其在地壳深熔作用中的意义[J].岩石学报,2012, 28(9):2963-2980. Gao Li'e, Zeng Lingsne, Shi Weigang, et al. Two Types of Garnets in the Cenozoic Granites from the Himayalan Orogenic Belt:Geochemical Characteristics and Implications for Crustal Anatexis[J]. Acta Petrologica Sinica,2012, 28(9):2963-2980.
[5] 高利娥, 曾令森, 王莉, 等. 藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制[J].岩石学报,2013, 29(6):1995-2012. Gao Li'e, Zeng Lingsen, Wang Li, et al. Age and Formation Mechanism of the Malashan High-Ca Two-Mica Granite Within the Northern Himalayan Gneiss Domes, Southern Tibet[J]. Acta Petrologica Sinica, 2013, 29(6):1995-2012.
[6] 王晓先, 张进江, 闫淑玉, 等. 藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义[J].地质通报,2016, 35(1):91-103. Wang Xiaoxian, Zhang Jinjiang, Yan Shuyu, et al. Age and Geochemistry of the Cuona Leucogranite in Southern Tibet and Its Geological Implications[J]. Geological Bulletin of China, 2016, 35(1):91-103.
[7] Liu Z C, Wu, F Y, Ding L, et al. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet[J]. Lithos,2016, 240/241/242/243:337-354.
[8] Liu Z C, Wu F Y, Qiu Z L, et al. Leucogranite Geochronological Constraints on the Termination of the South Tibetan Detachment in Eastern Himalaya[J].Tectonophysics,2017, 721(Sup. C):106-122.
[9] Aoya M, Wallis S R, Terada K,et al. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement[J]. Geology,2005, 33(11):853-856.
[10] Kawakami T, Aoya M, Wallis S, et al. Contact Metamorphism in the Malashan Dome, North Himalayan Gneiss Domes, Southern Tibet:An Example of Shallow Extensional Tectonics in the Tethys Himalaya[J]. Journal of Metamorphic Geology,2007, 25(8):831-853.
[11] Larson K P, Godin L, Davis W J, et al. Out-of-Sequence Deformation and Expansion of the Himalayan Orogenic Wedge:Insight from the Changgo Culmination, South Central Tibet[J]. Tectonics,2010, 29(4):1-30.
[12] Lee J, McClelland W, Wang Y, et al. Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome[J]. Geological Society, London, Special Publications,2006,268(1):445-469.
[13] Quigley M C, Liangjun Y, Gregory C, et al. U-Pb SHRIMP Zircon Geochronology and T-t-d History of the Kampa Dome, Southern Tibet[J]. Tectonophysics,2008,446(1/2/3/4):97-113.
[14] Zhang H, Harris N, Parrish R, et al. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform[J].Earth and Planetary Science Letters,2004,228(1/2):195-212.
[15] Kellett D A, Grujic D, Erdmann S. Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya:Implications for Continental Collision[J].Lithosphere,2009,1(5):259-281.
[16] Langille J, Lee J, Hacker B, et al. Middle Crustal Ductile Deformation Patterns in Southern Tibet:Insights from Vorticity Studies in Mabja Dome[J].Journal of Structural Geology,2010, 32(1):70-85.
[17] Wagner T, Lee J, Hacker B R, et al. Kinematics and Vorticity in Kangmar Dome, Southern Tibet:Testing Midcrustal Channel Flow Models for the Himalaya[J]. Tectonics,2010, 29(6):1-26.
[18] Daczko N R, Caffi P, Mann P. Structural Evolution of the Dayman Dome Metamorphic Core Complex, Eastern Papua New Guinea[J].Geological Society of America Bulletin,2011,123(11/12):2335-2351.
[19] Zhang J, Santosh M, Wang X, et al. Tectonics of the Northern Himalaya Since the India-Asia Collision[J].Gondwana Research,2012, 21(4):939-960.
[20] Langille J M, Jessup M J, Cottle J, et al. Kinematic and Thermal Studies of the Leo Pargil Dome:Implications for Synconvergent Extension in the NW Indian Himalaya[J].Tectonics,2014,33(9):1766-1786.
[21] Diedesch T F, Jessup M J, Cottle J M, et al. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome[J].Lithosphere,2016,8(5):480-504.
[22] Jessup M J, Langille J M, Cottle J M, et al. Crustal Thickening, Barrovian Metamorphism, and Exhumation of Midcrustal Rocks During Doming and Extrusion:Insights from the Himalaya, NW India[J]. Tectonics,2016,35(1):160-186.
[23] 许志琴, 马绪宣. 中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J].岩石学报,2015, 31(12):3509-3523. Xu Zhiqin,Ma Xuxuan. The Chinese Phanerozoic Gneiss Domes:Subduction-Related Type, Collision-Related Type and Combination Type of Subduction-Collision[J]. Acta Petrologica Sinica,2015, 31(12):3509-3523.
[24] 张进江, 郭磊, 张波. 北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征[J].地质科学,2007, 42(1):16-30. Zhang Jinjiang, Guo Lei, Zhang Bo. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China[J]. Chinese Journal of Geology, 2007, 42(1):16-30.
[25] 张进江, 杨雄英, 戚国伟, 等. 马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用[J].岩石学报,2011, 27(12):3535-3544. Zhang Jinjiang, Yang Xiongying, Qi Guowei, et al. Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD)[J]. Acta Petrologica Sinica, 2011,27(12):3535-3544.
[26] 张进江, 郑亚东. 变质核杂岩与岩浆作用成因关系综述[J].地质科技情报,1998, 17(1):20-26. Zhang Jinjiang, Zheng Yadong. Review on the Relationship Between the Formation of Metaporphic Core Complex and the Magmatism[J]. Geological Science and Technolgy Information, 1998, 17(1):20-26.
[27] Schultz M H, Hodges K V, Ehlers T A, et al. Thermochronologic Constraints on the Slip History of the South Tibetan Detachment System in the Everest Region, Southern Tibet[J].Earth and Planetary Science Letters,2017, 459(Sup. C):105-117.
[28] La Roche R S, Godin L, Cottle J M, et al. Direct Shear Fabric Dating Constrains Early Oligocene Onset of the South Tibetan Detachment in the Western Nepal Himalaya[J]. Geology,2016, 44(6):403-406.
[29] Cooper F J, Hodges K V, Parrish R R, et al. Synchronous N-S and E-W Extension at the Tibet-to-Himalaya Transition in NW Bhutan[J]. Tectonics,2015, 34(7):1375-1395.
[30] Coleman M, Hodges K. Evidence for Tibetan Plateau Uplift Before 14 Myr ago from a New Minimum Age for East-West Extension[J]. Nature,1995, 374:49-52.
[31] Viskupic K, Hodges K V,Bowring S A. Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal[J].Contributions to Mineralogy and Petrology,2005, 149(1):1-21.
[32] Lee J, Hager C, Wallis S R, et al. Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet[J]. Tectonics,2011,30(2):1-26.
[33] Mitsuishi M, Wallis S R, Aoya M, et al. E-W Extension at 19 Ma in the Kung Co Area, S. Tibet:Evidence for Contemporaneous E-W and N-S Extension in the Himalayan Orogen[J].Earth and Planetary Science Letters,2012, 325/326:10-20.
[34] Cottle J M, Searle M P, Horstwood M S, et al. Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U (-Th)-Pb Geochronology[J].The Journal of Geology,2009, 117(6):643-664.
[35] Murphy M, Yin A, Kapp P, et al. Structural Evolution of the Gurla Mandhata Detachment System, Southwest Tibet:Implications for the Eastward Extent of the Karakoram Fault System[J].Geological Society of America Bulletin,2002, 114(4):428-447.
[36] Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla Shear Zone:Implications for Uplift of the Southern Tibetan Plateau[J]. Tectonics,1995, 14(3):658-676.
[37] Sundell K E, Taylor M H, Styron R H, et al. Evidence for Constriction and Pliocene Acceleration of East-West Extension in the North Lunggar Rift Region of West Central Tibet[J]. Tectonics,2013, 32(5):1454-1479.
[38] Dewane T J, Stockli D F, Hager C, et al. Timing of Cenozoic E-W Extension in the Tangra Yum Co-Kung Co Rift, South-Central Tibet[J].Agu Fall Meeting Abstracts,2006, 87:1-2.
[39] Hintersberger E, Thiede R C, Strecker M R, et al. East-West Extension in the NW Indian Himalaya[J].Geological Society of America Bulletin,2010, 122(9/10):1499-1515.
[40] Thiede R C, Arrowsmith J R, Bookhagen B, et al. Dome Formation and Extension in the Tethyan Himalaya, Leo Pargil, Northwest India[J].Geological Society of America Bulletin,2006, 118(5/6):635-650.
[41] Fu J G, Li G M, Wang G H, et al. First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome[J].International Journal of Earth Sciences,2017, 106(5):1581-1596.
[42] 李光明, 张林奎, 焦彦杰, 等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质,2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008.
[43] Fu J G, Li G M, Wang G, et al. Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Observations and Thermochronologic Results[J].International Journal of Earth Sciences,2018, 107:2023-2041.
[44] 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定[J].中国地质,2018, 45(4):783-802. Fu Jiangang, Li Guangming, Wang Genhou, et al. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet[J]. Geology in China,2018, 45(4):783-802.
[45] 付建刚, 李光明, 王根厚, 等. 北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹窿Ar-Ar年代学证据[J].地球科学,2018, 43(8):2638-2650. Fu Jiangang, Li Guangming, Wang Genhou, et al.Timing of E-W Extension Deformation in North Himalaya:Evidence from Ar-Ar Age in the Cuonadong Dome, South Tibet[J].Earth Science, 2018, 43(8):2638-2650.
[46] 黄春梅, 李光明, 张志, 等. 藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束[J].地学前缘,2018, 25(6):182-195. Huang Chunmei, Li Guangming, Zhang Zhi, et al. Petrogenesis of the Cuonadong Leucogranites in South Tibet:Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating[J]. Earth Science Frontiers, 2018, 25(6):182-195.
[47] 夏祥标, 李光明, 曹华文, 等. 西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征[J].地球科学,2019, 44(7):2207-2223. Xia Xiangbiao, Li Guangming, Cao Huawen, et al. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit,Southern Tibet[J]. Earth Science, 2019, 44(7):2207-2223.
[48] 梁维, 张林奎, 夏祥标, 等. 藏南地区错那洞钨锡多金属矿床地质特征及成因[J].地球科学,2018, 43(8):2742-2754. Liang Wei, Zhang Linkui, Xia Xiangbiao, et al.Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China[J]. Earth Science, 2018, 43(8):2742-2754.
[49] 丁慧霞, 李文坛, 江媛媛. 喜马拉雅造山带东段错那洞片麻岩穹窿的变质作用及构造意义[J].岩石学报,2019, 35(2):312-324. Ding Huixia,Li Wentan,Jiang Yuanyuan. The Metamorphism and the Tectonic Implication of the Cuonadong Dome, Eastern Himalaya[J]. Acta Petrologica Sinica,2019, 35(2):312-324.
[50] Burg J P, Chen G M. Tectonics and Structural Zonation of Southern Tibet, China[J]. Nature,1984, 311:219-223.
[51] Fu J, Li G, Wang G, et al. Structural Analysis of Sheath Folds and Geochronology in the Cuonadong Dome, Southern Tibet, China:New Constraints on the Timing of the South Tibetan Detachment System and Its Relationship to North Himalayan Gneiss Domes[J]. Terra Nova,2020, 32(4):300-323.
[52] Ludwig K R. User's Manual for Isoplot/EX Version 3.00:A Geochronological Tool Kit for Microsoft Excel[J].Brkeley Geochronology Center, Special Publication,2003, 4:1-70.
[53] Harrison T M, Célérier J, Aikman A B, et al. Diffusion of 40Ar in Muscovite[J].Geochimica et Cosmochimica Acta,2009, 73(4):1039-1051.
[54] Kavalieris I, Walshe J L, Halley S, et al. Dome-Related Gold Mineralization in the Pani Volcanic Complex, North Sulawesi, Indonesia:A Study of Geologic Relations, Fluid Inclusions, and Chlorite Compositions[J]. Economic Geology,1990, 85(6):1208-1225.
[55] Rohrmeier M K, von Quadt A, Driesner T, et al. Post-Orogenic Extension and Hydrothermal Ore Formation:High-Precision Geochronology of the Central Rhodopian Metamorphic Core Complex (Bulgaria-Greece)[J]. Economic Geology,2013, 108(4):691-718.
[56] Steven N, Armstrong R. A Metamorphosed Proterozoic Carbonaceous Shale-Hosted Co-Ni-Cu Deposit at Kalumbila, Kabompo Dome:The Copperbelt Ore Shale in Northwestern Zambia[J].Economic Geology,2003, 98(5):893-909.
[57] Mair J L, Farmer G L, Groves D I, et al. Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada:Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems[J].Economic Geology,2011, 106(3):451-480.
[58] Horner J, Neubauer F, Paar H W, et al. Structure, Mineralogy, and Pb Isotopic Composition of the As-Au-Ag Deposit Rotgülden, Eastern Alps (Austria):Significance for Formation of Epigenetic Ore Deposits Within Metamorphic Domes[J].Mineralium Deposita,1997, 32(6):555-568.
[59] Kitt S, Kisters A, Vennemann T, et al. Orebody Geometry, Fluid and Metal Sources of the Omitiomire Cu Deposit in the Ekuja Dome of the Damara Belt in Namibia[J].Mineralium Deposita,2018, 53(2):261-276.
[1] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
[2] 张健, 张德军, 郑月娟, 陈树旺, 张海华, 苏飞, 黄欣. 内蒙古林西上二叠统林西组碎屑锆石LA-ICP-MS年代学及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1090-1103.
[3] 郝宇杰, 商青青, 任云生, 刘小禾, 陈聪. LA-ICP-MS原位分析白钨矿稀土元素[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1029-1041.
[4] 王成志, 董永胜, 王鹏森, 陈木森, 白雪瑞. 辽东弓长岭—岫岩地区古元古界辽河群变沉积岩的物源及构造背景[J]. 吉林大学学报(地球科学版), 2020, 50(4): 941-956.
[5] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[6] 蔡永丰, 刘风雷, 冯佐海, 周云, 曾长育. 桂东北姑婆山岩体矿物学和年代学特征及其成岩成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(3): 842-856.
[7] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
[8] 王挽琼, 刘正宏, 徐仲元, 白新会. 内蒙古乌拉特中旗色尔腾山岩群东五分子岩组锆石SHRIMP定年及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1053-1062.
[9] 鲁倩, 孙景贵, 安久海, 韩吉龙, 褚小磊. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
[10] 张超, 吴新伟, 张渝金, 郭威, 权京玉. 龙江盆地中生代火山岩锆石U-Pb年代学及其对基底性质的制约[J]. 吉林大学学报(地球科学版), 2019, 49(2): 460-476.
[11] 梁涛, 卢仁, 王莉. 北秦岭二郎坪岩体锆石U-Pb定年、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(2): 445-459.
[12] 伍锡昌, 初凤友, 王巍, 李正刚, 陈灵, 毕冬伟, 王建强. 劳盆地与马努斯盆地俯冲熔体与流体组分的识别——Sr-Nd-Pb同位素与独立成分分析[J]. 吉林大学学报(地球科学版), 2019, 49(2): 414-424.
[13] 明添学, 唐忠, 李永平, 罗建宏, 李蓉, 薛戈, 陈雷. 云南巧家东坪铅锌矿床原生晕特征与找矿潜力[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1394-1404.
[14] 罗彦军, 马伯永, 李尚林, 张海迪, 成功. 印度克拉通前寒武纪地质特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1287-1303.
[15] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1323 -1339 .
[2] 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289 -1303 .