吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 919-926.doi: 10.13278/j.cnki.jjuese.20200041

• 地球探测与信息技术 • 上一篇    下一篇

利用数字岩心技术评价含黏土砂岩导电模型

范雨霏, 潘保芝, 郭宇航, 张丽华   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-02-24 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:范雨霏(1993—),女,博士研究生,主要从事测井解释与数字岩石物理实验方面的研究,E-mail:740677521@qq.com
  • 基金资助:
    吉林省科技发展计划(20170201001SF);吉林省科技发展计划优秀青年人才项目(20190103150JH)

Evaluate Electrical Conductivity Models of Clay-Bearing Sandstones by Digital Core Technology

Fan Yufei, Pan Baozhi, Guo Yuhang, Zhang Lihua   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-02-24 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the Science and Technology Development Program of Jilin Province (20170201001SF) and the Jilin Pro-vince Science and Technology Development Plan Outstanding Young Talent Project (20190103150JH)

摘要: 黏土附加导电性使得岩石导电机理复杂化,影响了测井解释中饱和度计算的准确性。随着石油勘探的发展,测井解释研究者针对特定地区和储层条件的饱和度求解提出了多种导电模型。本文基于贝雷砂岩的数字岩心,构建多种含黏土的砂岩数字岩心,利用有限元方法模拟岩心饱和水时的电导率C0,并将数值模拟C0与5种模型计算C0对比,分析各种导电模型的适用情况。结果表明,黏土体积分数越小,黏土的阳离子交换容量越小,岩石孔隙度越大,公式计算C0越接近数值模拟C0。Doll公式和Indonesia公式计算C0与数值模拟C0接近,基本适用于不同孔隙度、黏土体积分数和阳离子交换容量的情况。

关键词: 含黏土砂岩, 电导率, 有限元方法, 数字岩心, 导电模型

Abstract: The additional conductivity of clay complicates the mechanism of rock conductivity and affects the accuracy of saturation calculation in logging interpretation. With the development of petroleum exploration, logging interpretation researchers proposed many kinds of conductive models for the saturation calculation of specific areas and reservoir conditions. Based on the three-dimensional digital core of Berea sandstone, a series of digital cores of clay-bearing sandstones were constructed. The finite-element method was used to simulate the electrical characteristics of the cores saturated with brine. We compared the numerical simulation C0 with the calculation C0 of five models to analyze the applicability of these conductive models. The results show that with the decrease of clay content and clay cation exchange capacity and the increase of rock porosity, the model calculation C0 is closer to the numerical simulation C0. The Doll formula and Indonesia formula are closer to the numerical simulation results, and are basically applicable to different porosity, clay volume, and cation exchange capacity.

Key words: clay-bearing sandstones, electrical conductivity, finite-element method, digital core, conductivity model

中图分类号: 

  • P631.2
[1] Archie G E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics[J]. Petroleum Technology, 1942, 146(1): 54-62.
[2] Patnode H W, Wyllie M R J. The Presence of Conductive Solids in Reservoir Rock as a Factor in Electric Log Interpretation[J]. Journal of Petroleum Technology, 1950, 2(2): 47-52.
[3] 李舟波, 潘保芝, 范晓敏.地球物理测井数据处理与综合解释[M].北京: 地质出版社, 2008. Li Zhoubo, Pan Baozhi, Fan Xiaomin. Data Processing and Comprehensive Interpretation of Geophysical Logging Data[M]. Beijing: Geological Publishing House, 2008.
[4] Tenchov G. Improvement of an Equation for the Electrical Conductivity of Water Saturated Shaly Sands Using the Dual Water Model[J]. Dokladi na Bolgarskata Akademiya na Naukite, 1992, 45(11): 47-49.
[5] 雍世和, 张超谟. 测井数据处理与综合解释[M]. 东营: 石油大学出版社, 2002. Yong Shihe, Zhang Chaomo. Logging Data Processing and Comprehensive Interpretation[M]. Dongying: China University of Petroleum Press, 2002.
[6] Simandoux P. Dielectric Measurements in Porous Media and Application to Shaly Formation[J]. Revue de L’Institut Français du Pétrole, 1963,18: 193-215.
[7] Poupon A, Leveaux J. Evaluation of Water Saturations in Shaly Formation[J]. The Log Analyst, 1971, XII(4): 3-8.
[8] Winsauer W O, McCardell W M. Ionic Double-Layer Conductivity in Reservoir Rock[J]. Journal of Petroleum Technology, 1953, 5(5): 129-134.
[9] Hill H I, Milbum J D. Effect of Clay and Water Salinity on Electrochemical Behavior of Reservoir Rocks[J]. Transactions of the AIME, 1956, 207: 65-72.
[10] Waxman M H, Smits L J M. Electrical Conductivities in Oil-Bearing Shaly Sands[J]. Society of Petroleum Engineers Journal, 1968, 8(2): 107-122.
[11] Clavier C, Coates G, Dumanoir J. Theoretical and Experimental Bases for the Dual-Water Model for the Interpretation of Shaly Sands[J]. Society of Petroleum Engineers Journal, 1984, 24(2): 153-168.
[12] 张丽华,潘保芝,王云梅,等.砂岩中绿泥石包膜与岩石润湿性及岩电参数的关系研究[J].石油物探, 2020, 59(4): 647-654. Zhang Lihua, Pan Baozhi, Wang Yunmei,et al. Relationship Between Pore-Lining Chlorite and Wettability of Rocks, and Rock Electrical Parameters of Sandstone[J]. Geophysical Prospecting for Petroleum, 2020, 59(4): 647-654.
[13] 李易霖,张云峰,丛琳,等.X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例[J].吉林大学学报(地球科学版), 2016, 46(2): 379-387. doi:10.13278/j.cnki.jjuese.201602107. Li Yilin, Zhang Yunfeng, Cong Lin, et al.Application of X-CT Scanning Technique in the Characterization of Micro Pore Structure of Tight Sandstone Reservoir: Taking the Fuyu Oil Layer in Daan Oilfield as an Example[J]. Journal of Jilin University (Earth Science Edition),2016,46(2):379-387.doi:10.13278/j.cnki.jjuese.201602107.
[14] 林承焰,王杨,杨山,等.基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版),2018, 48(1): 307-317. doi: 10.13278/j.cnki.jjuese.20160305. Lin Chengyan,Wang Yang,Yang Shan,et al.3D Modeling of Digital Core Based on X-Ray Computed Tomography[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 307-317. doi:10.13278/j.cnki.jjuese.20160305.
[15] Arns C H, Knackstedt M A, Pinczewski M V, et al. Accurate Estimation of Transport Properties from Microtomographic Images[J]. Geophysical Research Letters, 2001, 28(17): 3361-3364.
[16] Knackstedt M A, Arns C H, Pinczewskiz W V, et al. Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement Between Theory and Experiment[J]. Geophysics, 2002, 67(5): 1396-1405.
[17] Liu X, Sun J, Wang H. Numerical Simulation of Rock Electrical Properties Based on Digital Cores[J]. Applied Geophysics, 2009, 6(1): 1-7.
[18] Yue W Z, Tao G, Chai X Y, et al. Digital Core Approach to the Effects of Clay on the Electrical Properties of Saturated Rocks Using Lattice Gas Automation[J]. Applied Geophysics, 2011, 8(1): 11-17.
[19] 杨坤,王付勇,曾繁超,等.基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报(地球科学版),2020, 50(4): 1003-1011. Yang Kun, Wang Fuyong, Zeng Fanchao, et al.Permeability Prediction Based on Fractal Characteristics of Digital Rock[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4): 1003-1011.
[20] Fan Y F, Pan B Z, Guo Y H, et al. Effects of Clay Minerals and Pore-Water Conductivity on Saturation Exponent of Clay-Bearing Sandstones Based on Digital Rock[J]. Petrophysics, 2020, 61(4): 352-362.
[21] Garboczi E J. Finite Element and Finite Difference Programs for Computing the Linear Electric and Elastic Properties of Digital Images of Random Materials[R]. Gaithersburg: National Institute of Standards and Technology Internal, 1998.
[1] 杨坤, 王付勇, 曾繁超, 赵久玉, 王聪乐. 基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1003-1011.
[2] 束龙仓, 王明昭, 张惠潼, 张含明, 张乃鹏, 孙影, 孙超, 袁鹏杰. 咸淡水界面位置确定的综合方法(TEcG)及其应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1706-1713.
[3] 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1154-1164.
[4] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[5] 崔利凯, 孙建孟, 闫伟超, 高银山, 王洪君, 宋丽媛. 基于多分辨率图像融合的多尺度多组分数字岩心构建[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1904-1912.
[6] 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883.
[7] 严家斌, 皇祥宇. 大地电磁三维矢量有限元正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1538-1549.
[8] 李易霖, 张云峰, 丛琳, 谢舟, 闫明, 田肖雄. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387.
[9] 朱凯光, 李冰冰, 王凌群, 谢宾, 王琦, 程宇奇. 固定翼电磁数据双分量联合电导率深度成像[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1839-1845.
[10] 嵇艳鞠,冯雪,于明媚,徐江,呼彦朴,关珊珊. 基于多元线性回归的HTEM三维异常体电导率-深度识别[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1687-1694.
[11] 周洪福,王春山,聂德新. 断层带岩体变形模量对坝基稳定性影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1254-1259.
[12] 闫伟林, 覃豪, 李洪娟. 基于导电孔隙的中基性火山岩储层含气饱和度解释模型[J]. J4, 2011, 41(3): 915-920.
[13] 王新民, 崔学慧, 陆祥安. 求解非稳定对流占优水质模型的非标准Galerkin有限元法[J]. J4, 2011, 41(3): 812-818.
[14] 闫磊, 谭守强, 潘保芝, 张平, 刘玉梅. 低阻油层成因机理及测井评价方法--以港北南翼区块馆陶组为例[J]. J4, 2010, 40(6): 1456-1462.
[15] 宋延杰,唐晓敏,张传英. 种混合泥质砂岩有效介质通用电阻率模型比较[J]. J4, 2008, 38(5): 879-0886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .