吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1003-1011.doi: 10.13278/j.cnki.jjuese.20190148

• 地质与资源 • 上一篇    

基于数字岩心分形特征的渗透率预测方法

杨坤, 王付勇, 曾繁超, 赵久玉, 王聪乐   

  1. 中国石油大学(北京)非常规油气科学技术研究院, 北京 102249
  • 收稿日期:2019-07-29 发布日期:2020-07-29
  • 通讯作者: 王付勇(1985-),男,副研究员,博士,主要从事致密油藏开发与提高采收率研究,E-mail:wangfuyong@cup.edu.cn E-mail:wangfuyong@cup.edu.cn
  • 作者简介:杨坤(1994-),男,硕士研究生,主要从事致密油藏开发与提高采收率研究,E-mail:2017210531@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(51604285, 51874320)

Permeability Prediction Based on Fractal Characteristics of Digital Rock

Yang Kun, Wang Fuyong, Zeng Fanchao, Zhao Jiuyu, Wang Congle   

  1. Unconventional Petroleum Research Institute, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2019-07-29 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (51604285, 51874320)

摘要: 基于数字岩心技术,对岩心CT扫描图像进行处理,结合分形理论求取数字岩心的分形特征参数并通过构建数字岩心的等效分形介质模型对岩心渗透率进行预测。首先对两块砂岩岩心进行了微米CT扫描,提取岩心孔隙网络模型,分析岩心孔隙结构特征,结果表明岩心的孔喉半径分布与孔喉配位数分布对岩心渗透率有一定影响;其次利用MATLAB、Image J等软件对CT扫描得到的数字岩心及帝国理工学院网站公开的数字岩心进行处理,基于分形理论求取数字岩心分形维数、迂曲度、迂曲度分形维数和最大孔隙直径等参数;最后基于分形渗透率模型对岩心渗透率进行预测。结果表明:预测渗透率与岩心渗透率具有良好的相关性,相关系数大于0.97。因此,基于数字岩心技术,通过构建数字岩心等效分形介质模型,可以有效预测岩心渗透率。

关键词: 数字岩心, CT扫描, 渗透率, 分形, 孔隙结构

Abstract: Based on digital rock technology, the core CT scanning images are processed to obtain the core fractal parameters with fractal theory, and then the core permeability is predicted by constructing an equivalent fractal model of digital rock. In this study, firstly, the micro-CT scanning experiments of two sandstones were carried out,the core pore network models were extracted, and the pore throat structures were analyzed. Further, these two digital rocks and nine digital rocks from the Imperial College were processed to obtain the fractal parameters including fractal dimension, tortuosity, tortuosity dimension, and maximum pore radius by using MATLAB and Image J. Finally, based on the fractal permeability model, the permeability of cores was predicted. The results show that the pore throat radius distribution and pore coordination number distribution have influence on core permeability. The predicted permeability has a good correlation with the core permeability, and the correlation coefficient is greater than 0.97. Therefore, the core permeability can be effectively predicted based on digital rock technology by constructing an equivalent fractal model.

Key words: digital rock, CT scanning, permeability, fractal, pore structure

中图分类号: 

  • TE311
[1] 姚军,赵秀才,衣艳静,等. 数字岩心技术现状及展望[J]. 油气地质与采收率, 2005, 12(6):52-54. Yao Jun, Zhao Xiucai, Yi Yanjing, et al. Status and Prospect of Digital Core Technology[J]. Petroleum Geology and Recovery Efficiency, 2005,12(6):52-54.
[2] 潘汝江,何翔,肖维民,等. CT扫描技术在岩心三维重建中的应用[J]. CT理论与应用研究, 2018, 27(3):349-356. Pan Rujiang, He Xiang, Xiao Weimin, et al. Application of CT Scanning Technique in Core 3D Reconstruction[J]. CT Theory and Application, 2018, 27(3):349-356.
[3] 王鑫元,沈忠山,张东,等. 基于全直径岩心CT扫描技术的三元复合驱后微观孔隙结构特征[J]. 大庆石油地质与开发, 2019, 38(2):81-86. Wang Xinyuan, Shen Zhongshan, Zhang Dong, et al.Microscopic Pore Structure Characteristics After ASP Flooding Based on CT Scanning Technique of the Full-Diameter Core[J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(2):81-86.
[4] Dvorkin J, Walls J, Tutuncu A, et al. Rock Property Determination Using Digital Rock Physics[C]//Geophysics of the 21st Century:The Leap into the Future, SEG Technical Program Expanded Abstracts 2003. Moscow:European Association of Geoscientists & Engineers, 2003:cp-38-00040.
[5] 李易霖,张云峰,丛琳,等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2):379-387. Li Yilin, Zhang Yunfeng, Cong Lin, et al. Application of X-CT Scanning Technique in the Characterization of Micro Pore Structure of Tight Sandstone Reservoir:An Example from Fuyu Oil Layer in Daan Oilfield[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):379-387.
[6] 赵玲,石雪,夏慧芬. 数字岩心孔隙网络模型的构建方法[J]. 科学技术与工程, 2018, 18(26):32-38. Zhao Ling, Shi Xue, Xia Huifen. Construction Method of Digital Core Pore Network Model[J]. Science Technology and Engineering, 2018, 18(26):32-38.
[7] Adler P M, Jacquin C G, Thovert J F. The Formation Factor of Reconstructed Porous Media[J]. Water Resources Research, 1992, 28(6):1571-1576.
[8] Hazlett R D. Statistical Characterization and Stochastic Modeling of Pore Networks in Relation to Fluid Flow[J]. Mathematical Geology, 1992, 29(6):801-822.
[9] Bryant S, Blunt M. Prediction of Relative Permeability in Simple Porous Media[J]. Physical Review:A:Atomic, Molecular, and Optical Physics, 1992, 46(4):2004-2011.
[10] 姚军,王晨晨,杨永飞,等. 碳酸盐岩双孔隙网络模型的构建方法和微观渗流模拟研究[J]. 中国科学:物理学力学天文学, 2013, 43(7):896-902. Yao Jun, Wang Chenchen, Yang Yongfei, et al. The Construction Method and Microscopic Flow Simulation of Carbonate Dual Pore Network Model[J]. Scientia Sinica:Physica,Mechanica & Astronomica, 2013, 43(7):896-902.
[11] 赵明,郁伯铭. 数字岩心孔隙结构的分形表征及渗透率预测[J]. 重庆大学学报, 2011, 34(4):88-94. Zhao Ming, Yu Boming. The Fractal Characterization of Pore Structure for Some Numerical Rocks and Prediction of Permeabilities[J]. Journal of Chongqing University, 2011, 34(4):88-94.
[12] Sun H, Yao J, Cao Y, et al. Characterization of Gas Transport Behaviors in Shale Gas and Tight Gas Reservoirs by Digital Rock Analysis[J]. International Journal of Heat and Mass Transfer, 2017, 104:227-239.
[13] 林承焰,王杨,杨山,等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版),2018, 48(1):307-317. Lin Chengyan, Wang Yang, Yang Shan, et al. 3D Modeling of Digital Core Based on X-Ray Computed Tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):307-317.
[14] Golparvar A, Zhou Y, Wu K, et al. A Comprehensive Review of Pore Scale Modeling Methodologies for Multiphase Flow in Porous Media[J]. Advances in Geo-Energy Research, 2018, 2(4):418-440.
[15] Dong H, Blunt M J. Pore-Network Extraction from Micro-Computerized-Tomography Images[J]. Physical Review E, 2009, 80(3):036307.
[16] Mandelbrot B B. The Fractal Geometry of Nature[M]. New York:WH Freeman, 1983.
[17] Yu B, Cheng P. A Fractal Permeability Model for Bi-dispersed Porous Media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14):2983-2993.
[18] Yu B. Fractal Character for Tortuous Streamtubes in Porous Media[J]. Chinese Physics Letters, 2005, 22(1):158.
[19] Wu J, Yu B. A Fractal Resistance Model for Flow Through Porous Media[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20):3925-3932.
[20] Wang F, Jiao L, Lian P, et al. Apparent Gas Permeability, Intrinsic Permeability and Liquid Permeability of Fractal Porous Media:Carbonate Rock Study with Experiments and Mathematical Modelling[J]. Journal of Petroleum Science and Engineering, 2019, 173:1304-1315.
[21] 尹贤龙. 基于图像分形维数估计的最小盒计数法的研究[J]. 电气应用, 2006,25(9):93-96. Yin Xianlong. Research of Minimum Box-Counting Method Based on Image Fractal Dimension Estimation[J]. Elerctrotechnical Application, 2006, 25(9):93-96.
[22] 曹俊贤,宋春林. 分形维数的计算及改进[J]. 信息技术与信息化, 2017(10):19-23. Cao Junxian, Song Chunlin. Calculation and Improvement of the Fractal Dimension[J]. Information Technology and Informatization, 2017(10):19-23.
[23] 王聪乐. 砂岩油藏孔隙结构分形表征与渗透率模型研究[D]. 北京:中国石油大学(北京), 2018. Wang Congle. Reasearch on Fractal Characterization of Pore Structure and Permeability Model in Sandstone Reservoirs[D]. Beijing:China University of Petroleum (Beijing), 2018.
[24] Al-Raoush R I, Madhoun I T. TORT3D:A MATLAB Code to Compute Geometric Tortuosity from 3D Images of Unconsolidated Porous Media[J]. Powder Technology, 2017, 320:99-107.
[25] Imperial Colleage. Micro-CT Images and Networks[DB/OL].[2019-05-23]. http://www.imperial.ac.uk/earth-science/research/research-groups/per-m/research/pore-scale-modelling/micro-ct-images-and-networks/.
[1] 王付勇, 程辉. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征[J]. 吉林大学学报(地球科学版), 2020, 50(3): 721-731.
[2] 林孟雄, 刘立, 张一果, 常森, 夏阳. 苏里格气田东二区气水分布及产水控制因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(2): 627-634.
[3] 王璐, 杨胜来, 彭先, 刘义成, 徐伟, 邓惠. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯-磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版), 2019, 49(4): 947-958.
[4] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[5] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[6] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[7] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[8] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[9] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[10] 崔利凯, 孙建孟, 闫伟超, 高银山, 王洪君, 宋丽媛. 基于多分辨率图像融合的多尺度多组分数字岩心构建[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1904-1912.
[11] 李亚龙, 于兴河, 单新, 王娇, 史新, 胡鹏. 鄂尔多斯盆地东南部山西组泥岩封盖性能评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1070-1082.
[12] 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906.
[13] 康学远, 施小清, 史良胜, 吴吉春. 基于集合卡尔曼滤波的多相流模型参数估计——以室内二维砂箱中重质非水相污染物入渗为例[J]. 吉林大学学报(地球科学版), 2017, 47(3): 848-859.
[14] 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847.
[15] 白永强, 刘美, 杨春梅, 姜振学. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1332-1341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!