吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 909-918.doi: 10.13278/j.cnki.jjuese.20200049
李启成, 闵也, 何书耕
Li Qicheng, Min Ye, He Shugeng
摘要: 地震中多普勒效应可以确定地震的破裂面等,说明对多普勒效应的研究有实际意义,但目前确定地震中是否存在多普勒效应的方法并不成熟。在研究多普勒效应空间分布规律的基础上,提出用小波变换确定地震中是否存在多普勒效应的方法。选择位于汶川地震断层滑动前方的若干台站对台站最初时段的地震记录进行小波变换时,发现随着震中距的增加,小波谱高频幅值明显大于小波谱低频幅值;说明虽然存在介质对地震波的吸收衰减作用,但多普勒效应的存在仍使得小波谱高频幅值增大。选择与汶川地震断层垂直方位的若干台站对台站最初时段的地震记录进行小波变换时,发现随着震中距的增加,小波谱高频幅值迅速降低,震中距大到一定程度后低频部分的小波谱幅值会明显大于高频部分的小波幅值;说明在该方向上,介质对地震波的高频吸收衰减起主要作用,没有发生多普勒效应。
中图分类号:
[1] 卓钰如,李文香,龚镇雄.用多普勒效应研究中小地震的破裂面和破裂传播速度[J].地震学报, 1982, 4(1): 16-28. Zhuo Yuru, Li Wenxiang, Gong Zhenxiong. A Study of the Rupture Surfaces and Velocity of Propagation of Rupture of Small and Medium Size Earthquakes Based on Their Doppler Effect[J]. Acta Seismological Sinica, 1982, 4(1): 16-28. [2] Douglas A, Hudson J A, Marshall P D. Earthquake Seismograms that Show Doppler Effects Due to Crack Propagation[J]. Geophysical Journal International, 1981, 64 (1): 163-185. [3] Ge Jin, Tang Youcai, Zhou Shiyong, et al. Doppler Effect of the Rupture Process of the Great MW7.9 Wenchuan Earthquake[J]. Earthquake Science, 2010, 23(6): 535-539. [4] 刘瑞丰, 邹立晔, 张立文. 汶川地震的面波震级测定及其多普勒效应[J]. 地震学报, 2018, 40(3): 364-373. Liu Ruifeng, Zou Liye, Zhang Liwen. Determination of the Surface-Wave Magnitude of the Wenchuan Earthquake and Its Seismic Doppler Effect[J]. Acta Seismologica Sinica, 2018, 40(3): 364-373. [5] Aki K. Seismic Displacement near a Fault[J]. J Geophys Res, 1968, 73: 5359-5376. [6] Saburoh M. Rupture History of the 1979 Imperial Valley Earthquake Estimated from EL Centro Strong-Motion Accelerograms[C]//Proceedings of Ninth World Conference on Earthquake Engineering:Vol Ⅱ. Tokyo-Kyoto: Conference Committee, 1988: 277-282. [7] Mavroeidis G P, Papageorgiou A S. Near-Source Strong Ground Motion: Characteristics and Design Issues[C]//Proc of the Seventh U. S. National Conf on Earthquake Engineering (7NCEE). Boston:[s. n.], 2002: 21-25. [8] Wang G Q, Zhou X Y, Zhang P Z, et al. Characteristics of Amplitude and Duration for near Fault Strong Ground Motion from 1999 Chi-Chi, Taiwan Earthquake[J]. SoilDyn Earthquake Eng, 2002, 22: 73-96. [9] Somerville P G, Smith N F, Graves R W, et al. Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity[J]. Seism Res Lett, 1997, 68: 199-222. [10] 刘启方,袁一凡,金星,等. 近断层地震动的基本特征[J].地震工程与工程震动, 2006, 26(1):1-10. Liu Qifang, Yuan Yifan, Jin Xing, et al. Basic Characteristics of Near-Fault Ground Motion[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1): 1-10. [11] Frez J, Nava F A, Acosta J. Source Rupture Plane Determination from Directivity Doppler Effect for Small Earthquakes Recorded by Local Networks[J]. Bulletin of the Seismological Society of America, 2010, 100(1): 289-297. [12] He X, Zhan Z, Zhang P, et al. Rupture Directivity of the 18 April 2008 Mt Carmel, Illinois, Earthquake from Modeling of Local Seismic Waveforms[J]. Bulletin of the Seismological Society of America, 2018, 108(6): 3278-3288. [13] He X, Ni S. Resolving Horizontal Rupture Directivity of Moderate Crustal Earthquake in Sparse Network with Ambient Noise Location[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 533-552. [14] Xie Junju. Strong-Motion Directionality and Evidence of Rupture Directivity Effects During the Chi-Chi Mw 7.6 Earthquake[J]. Bulletin of the Seismological Society of America, 2019, 109 (6): 2367-2383. [15] Li Qicheng, He Shugeng, Min Ye, et al. The Sliding Speed Calculation of the Wenchuan Earthquake Fault with the Doppler Effect[J]. Applied Geophysics, 2019,16(3): 1-10. [16] 李启成,何书耕,闵也.龙门山断层破裂的频率方向性效应[J].吉林大学学报(地球科学版),2019,49(3):865-871. Li Qicheng, He Shugeng, Min Ye. Frequency Non-Stationary of Longmanshan Fault Rupture[J]. Journal of Jilin University (Earth Edition), 2019,49(3):865-871 [17] Wan Yongge. Introduction to Seismology[M]. Beijing: Science Press, 2016. [18] Wan Yongge, Shen Zhengkang, Roland B, et al. Fault Geometry and Slip Distribution of the 2008 MW7.9 Wenchuan, China Earthquake Inferred from GPS and InSAR Measurements[J]. Geophysical Journal International, 2016, 208: 748-766. [19] 张彬,杨风暴.小波分析方法及其应用[M].北京:国防工业出版社,2011. Zhang Bin, Yang Fengbao. Wavelet Analysis Method and Its Application[M]. Beijing: National Defense Industry Press, 2011. [20] 张勇,冯万鹏,许力生,等.2008年汶川大地震的时空破裂过程[J].中国科学:D辑:地球科学,2008,38(10):1186-1198. Zhang Yong, Feng Wanpeng, Xu Lisheng, et al. The Time and Space Rupture Process of the Wenchuan Earthquake in 2008[J]. Chinese Science: D Series: Earth Science, 2008, 38(10): 1186-1198. |
[1] | 薄景山, 李琪, 齐文浩, 王玉婷, 赵鑫龙, 张毅毅. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1295-1305. |
[2] | 孟畅, 唐亮. 液化场地高桩码头抗震性能地震动效应[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1463-1472. |
[3] | 张安琪, 苏雷, 凌贤长, 唐亮, 王建峰, 焉振. 高桩码头抗震简化分析方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1523-1534. |
[4] | 陈毅军, 程浩, 巩恩普, 薛林. 基于Shearlet变换的尺度方向自适应阈值地震数据随机噪声压制方法[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1231-1242. |
[5] | 甘心. ZYXC-244机械式旋冲螺杆钻具的研制与应用[J]. 吉林大学学报(地球科学版), 2021, 51(3): 825-832. |
[6] | 谭晓淼, 高锐, 王海燕, 侯贺晟, 李洪强, 匡朝阳. 中亚造山带东段深地震反射剖面大炮揭露下地壳与Moho结构——数据处理与初步解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 898-908. |
[7] | 张淑亮, 王霞, 郭文峰, 陈慧, 李惠玲. 多种地球物理场观测数据中亚失稳现象[J]. 吉林大学学报(地球科学版), 2021, 51(2): 571-583. |
[8] | 谢樊, 王海燕, 侯贺晟, 高锐. 中亚造山带东段浅表构造速度结构——深地震反射剖面初至波层析成像的揭露[J]. 吉林大学学报(地球科学版), 2021, 51(2): 584-596. |
[9] | 王磊, 沈金松, 邹榕, 蔺学敏, 徐忠祥, 苏朝阳, 杨萍. 融合地震属性和成像测井信息优化的储层缝洞带评价与钻井轨迹[J]. 吉林大学学报(地球科学版), 2021, 51(2): 607-623. |
[10] | 王孔伟, 路永强, 聂进, 滕明明, 王宵亮. 三峡库区仙女山和九畹溪断裂带水库地震变化规律[J]. 吉林大学学报(地球科学版), 2021, 51(2): 624-637. |
[11] | 曹凤娟, 贾丽华, 李梦莹, 王松阳. 辽宁地区主要断裂活动性和地震危险性评估[J]. 吉林大学学报(地球科学版), 2021, 51(1): 286-295. |
[12] | 阮庆丰, 刘财, 刘俊清, 张宇, 郑国栋. 2019年5月18日松原M5.1地震构造机制分析[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1897-1904. |
[13] | 达姝瑾, 李学贵, 董宏丽, 李含阳. 微地震震源定位方法综述[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1228-1239. |
[14] | 杨凌云, 吴国忱, 李青阳. 高效优化非分裂PML边界二阶标量波方程数值模拟方法[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1755-1767. |
[15] | 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476. |
|