吉林大学学报(地球科学版) ›› 2025, Vol. 55 ›› Issue (1): 328-339.doi: 10.13278/j.cnki.jjuese.20240305

• 地球探测与信息技术 • 上一篇    下一篇

基于GAM-YOLOv8的遥感图像舰船目标跟踪

杨笑天1, 2,谭金林1, 2,鱼昕1, 2,赵俊哲3,刘铭3   

  1. 1.陕西航天技术应用研究院有限公司,西安 710100
    2.西安空间无线电技术研究所,西安 710100
    3.长春工业大学数学与统计学院,长春 130012
  • 收稿日期:2024-11-20 出版日期:2025-01-26 发布日期:2025-02-07
  • 通讯作者: 刘铭(1979—),男,教授,博士,主要从事机器学习、大数据分析与数据挖掘研究,E-mail:liuming@ccut.edu.cn
  • 作者简介:杨笑天(1991—),男,工程师,硕士,主要从事遥感大数据智能处理、分析与应用,E-mail:415542866@qq.com
  • 基金资助:
    吉林省发改委基本建设项目(2022C043-2);吉林省自然科学基金(20200201157JC)

Ship Target Tracking Based on GAM-YOLOv8 Remote Sensing Images

Yang Xiaotian1,2, Tan Jinlin1,2, Yu Xin1,2, Zhao Junzhe3, Liu Ming3   

  1. 1. Shaanxi Aerospace Technology Application Research Institute Co., Ltd., Xi’an 710100, China
    2. Xi’an Space Radio Technology Research Institute, Xi’an 710100, China
    3. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
  • Received:2024-11-20 Online:2025-01-26 Published:2025-02-07
  • Supported by:
    the Basic Construction Project of Jilin Provincial Development and Reform Commission (2022C043-2) and the Natural Science Foundation of Jilin Province (20200201157JC)

摘要: 针对卫星遥感图像舰船目标追踪和轨迹绘制,提出了一种全局注意力(global attention mechanism, GAM)模块改进YOLO(you only look once)v8算法(GAM-YOLOv8)与DeepSORT算法相结合的方法。在YOLOv8网络结构中加入GAM模块,以提升模型提取卫星遥感图像特征的能力,提高舰船目标追踪的精度和稳定性;实施基于RGB(red, green, blue)-HSV(hue, saturation, value)融合颜色空间转换卷积模块的数据增强技术扩充数据集,帮助模型捕捉更多维度的特征信息,进一步提升识别准确度;利用DeepSORT算法通过结合目标的特征外观和运动信息,增强追踪过程中的稳定性与精度,有效减少身份切换和目标丢失。实验结果表明,本文提出的GAM-YOLOv8与DeepSORT相结合的方法,相较于原始YOLOv8模型,在遥感图像舰船目标检测与跟踪任务中均表现出了显著的性能提升,在准确度、召回率和平均准确率精度上分别提高了7.6%、7.9%和6.0%,在帧率、多目标跟踪准确度和多目标跟踪精确度上分别提升了17.7%、6.9%、1.9%,身份切换次数降低了10.0%。

关键词: 卫星遥感, 深度学习, 目标跟踪, YOLOv8

Abstract: Aiming at target tracking and trajectory drawing of ships in satellite remote sensing images, a method combining the global attention mechanism (GAM) module improved YOLO (you only look once) v8 algorithm (GAM-YOLOv8) and the DeepSORT algorithm is proposed. The GAM module is added to the YOLOv8 network structure to enhance the model's ability to extract satellite remote sensing image features and improve the accuracy and stability of ship target tracking. The data enhancement technology based on the RGB (red, green, blue)-HSV (hue, saturation, value) fusion color space conversion convolution module is implemented to expand the data set, helping the model capture more dimensional feature information and further improve the recognition accuracy. The DeepSORT algorithm is used to enhance the stability and accuracy of the tracking process by combining the target's feature appearance and motion information, thereby effectively reducing identity switching and target loss. Experimental results show that the proposed method of combining GAM-YOLOv8 with DeepSORT shows significant performance improvement in remote sensing image ship target detection and tracking tasks compared with the original YOLOv8 model. The accuracy, recall rate, and average precision are increased by 7.6%, 7.9%, and 6.0%, respectively. Meanwhile, the frame rate, multi-target tracking accuracy, and multi-target tracking precision are improved by 17.7%, 6.9%, and 1.9%, respectively, and the number of identity switches is decreased by 10.0%.

Key words: satellite remote sensing, deep learning, target tracking, YOLOv8

中图分类号: 

  • P237
[1] 高康哲, 王凤艳, 刘子维, 王明常. 基于改进U-Net的遥感图像语义分割[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1752-1763.
[2] 王婷婷, 孙振轩, 戴金龙, 姜基露, 赵万春.

松辽盆地中央坳陷区储层岩性智能识别方法 [J]. 吉林大学学报(地球科学版), 2023, 53(5): 1611-1622.

[3] 刘 霞, 孙英杰. 基于融合残差注意力机制的卷积神经网络地震信号去噪[J]. 吉林大学学报(地球科学版), 2023, 53(2): 609-.
[4] 张岩, 刘小秋, 李杰, 董宏丽, . 基于时频联合深度学习的地震数据重建[J]. 吉林大学学报(地球科学版), 2023, 53(1): 283-296.
[5] 熊越晗, 刘东燕, 刘东升, 王艳磊, 唐小山. 基于岩样细观图像深度学习的岩性自动分类方法[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1597-1604.
[6] 王新民, 张超超. 基于深度学习的旧金山湾水质预测[J]. 吉林大学学报(地球科学版), 2021, 51(1): 222-230.
[7] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .