吉林大学学报(地球科学版)

• 地质与资源 • 上一篇    下一篇

亚洲大陆主要活动块体的现今构造应力数值模拟

戴黎明1,2,李三忠1,2,楼达3,索艳慧1,2,刘鑫1,2,余珊1,2,周淑慧3   

  1. 1.中国海洋大学海洋地球科学学院,山东 青岛266100;
    2.海底科学与探测技术教育部重点实验室,山东 青岛266100;
    3.中国石油大港油田集团有限公司,天津300280
  • 收稿日期:2012-10-09 出版日期:2013-03-26 发布日期:2013-03-26
  • 通讯作者: 李三忠(1968-),男,教授,博士生导师,主要从事构造地质学及海洋地质学的教学和研究工作,Tel:0532-66781971 E-mail:sunzhong@ouc.edu.cn
  • 作者简介:戴黎明(1980-),男,博士研究生,主要从事构造地质学及其数值模拟研究,Tel:0532-66781971,E-mail:dlming.geo@gmail.com
  • 基金资助:

    国家自然科学基金项目(41190072,41072152);山东省自然科学基金青年基金项目(ZR2012DQ012);中央高校财政南海专项;海洋“863”重点项目(2009AA093401)

Numerical Modeling of Present-Day Structural Stress of Major Active Blocks in the Asian Continent

Dai Liming1,2,Li Sanzhong1,2,Lou Da3, Suo Yanhui1,2,Liu Xin1,2,Yu Shan1,2,Zhou Shuhui3   

  1. 1.College of Marine Geosciences, Ocean University of China, Qingdao266100, Shandong, China;
    2.Key Lab of Submarine Geosciences and Prospecting Techniques,Ministry of Education, Qingdao266100, Shandong, China;
    3.Dagang Oil Field Company, Ltd., CNPC, Tianjin300280, China
  • Received:2012-10-09 Online:2013-03-26 Published:2013-03-26

摘要:

亚洲大陆晚新生代和现代构造变形以活动地块为主要特征,表现为在统一构造格局下不同地块间具有不同的运动方式和速度。为了研究这些具有不同运动学性质块体间的相互作用以及构造变形特征,基于亚洲大陆的总体构造格局构建了二维有限元模型。根据模拟结果,对比已知GPS数据、震源机制解以及地质调查数据等,定量分析了大陆内部主要活动地块构造应力场的分布特征,并探讨了影响亚洲大陆现今构造变形特征的主要因素。结果表明:在我国的西部陆块内,由于周边一系列近EW向弧形活动构造带的存在,导致其内部次级块体运动速率的衰减,从而进一步导致应力环境的变化,由青藏中部的挤压-拉张环境逐渐转变为塔里木、天山地区的完全挤压环境;在西伯利亚地块和印度板块的联合挤压作用下,华北地块上地壳的应力表现为较弱的挤压环境,而在该种应力环境下块体内部伸展构造的成因很可能与其深部的动力学环境有关;华南地块的运动方向与台湾造山带相反,从而形成一个秦岭-大别造山带以南的较强烈的挤压-拉张区;在印度-澳大利亚板块和菲律宾俯冲板块的联合挤压作用下,巽他地块作为华南地块和印支地块的逃逸窗口,表现出以婆罗洲、南海为中心近圆弧形的弱挤压区以及环绕挤压区外缘挤压-拉张区的应力分布特征。

关键词: 亚洲大陆, 活动块体, 构造应力, 有限元法

Abstract:

The Late Cenozoic and present-day deformation of the Asian continent is characterized by rigid motions of active blocks with different motion patterns and velocities. To research different structural deformation and interaction among these active-blocks, we establish four different finite element numerical models based on the tectonic framework of the Asian continent. By comparing the modeling result with the GPS data, focal mechanism solution and geological survey, we quantitatively explain the distribution characteristics of the principal stresses. Then, the major factors influencing the present-day deformation of the Asian continent are discussed accordingly. The results are summarized as followings. Velocity of active blocks movements in the Western China mainland was influenced by the continuous northward compression of the Indian plate gradually decreasing from south to north across a series of lithospheric-scale active tectonic zones. This kind of variety can change stress environment from compressional-tensional area in the central Tibet to completely compressional area in the Tarim basin and the Tianshan Mountain. In the model, the calculated stress of the North China block displays very weak compressional environment, but the seismicity and extensional structures extensively developed in the inner North China block. This puzzle probably means that deep dynamics cause the North China block reactive. Because of the compression between the India plate and the Philippines plate, the motion senses of the South China block and the Taiwan orogenic belt are opposite, resulting in the formation of strong compressional-tensional domain south of the Qinling-Dabie orogenic belt. As “extrusion window” of the South China and the Indochina block, the Sunda block shows particular stress distribution, which has an arc-shaped weak compressional area centered by the South China Sea and there is a relatively strong compressional-tensional area around it.

Key words: Asian continent, active block, structural stress, finite element method

中图分类号: 

  • P553
[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[3] 朱传华, 王伟锋, 王青振, 李玉坤. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1580-1588.
[4] 陈树民,姜传金,刘立,初丽兰,裴明波. 松辽盆地徐家围子断陷火山岩裂缝形成机理[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1816-1826.
[5] 顾观文,吴文鹂,李桐林. 大地电磁场三维地形影响的矢量有限元数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1678-1686.
[6] 刘昌军,赵华,张顺福,丁留谦. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 922-930.
[7] 年廷凯,张克利,刘红帅,徐海洋. 基于强度折减法的三维边坡稳定性与破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(1): 178-185.
[8] 周洪福, 聂德新. 水电工程坝址区构造应力场三维数值反演[J]. J4, 2012, 42(3): 785-791.
[9] 刘红帅, 年廷凯, 万少石. 三维边坡稳定性分析中的边界约束效应[J]. J4, 2010, 40(3): 638-644.
[10] 赵广茂,李桐林,王大勇,李建平. 基于二次场二维起伏地形MT有限元数值模拟[J]. J4, 2008, 38(6): 1055-1059.
[11] 戴文亭,陈星,张弘强. 粘性土的动力特性实验及数值模拟[J]. J4, 2008, 38(5): 831-0836.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!