Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (1): 298-306.doi: 10.13278/j.cnki.jjuese.20160343

Previous Articles     Next Articles

A Method for Improving Accuracy of Reservoir Fracture Identification

Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-11-28 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Nature Science Foundation(41174096) and the 12th Five-Year Major Projects(2011ZX05040-002)

Abstract: In the exploration and development of oil field, it is always a difficult problem to accurately and efficiently identify fractures in reservoirs. The conventional well log is easy to identify the fracture but the accuracy is low. The imaging log has high resolution and high accuracy but complicated for artificial identification. In order to conquer the shortcomings of conventional and electrical imaging well log fracture identification, this paper presents an efficient and accurate method for reservoir fracture identification. The authors selected fracture samples based on the response of fractures in electric imaging log to establish conventional log comprehensive factor Y1 and imaging log factor Y2 for fracture recognition, then combined Y1 and Y2 to build reservoir fracture identification factor Y3. Y3 is used to identify fractures, which is more accurate than conventional log with the sampling interval 0.002 54 m which is much less than the conventional log interval 0.125 m. Compared with the electric imaging log, it can not only save time and labor but also increase the efficiency of the automatic fracture pick up. The method was applied to the identification of volcanic reservoir fractures in Wangfu area, which quickly and accurately identified the reservoir fractures, and its accuracy is about 80%. This can be a reference for the identification of other types of reservoir fractures.

Key words: fracture, comprehensive identification, imaging logging, conventional logging, volcanic reservoir

CLC Number: 

  • P631.8
[1] 陈树民,姜传金,刘立,等. 松辽盆地徐家围子断陷火山岩裂缝形成机理[J]. 吉林大学学报(地球科学版), 2014, 46(6): 1816-1826. Chen Shumin, Jiang Chuanjin, Liu Li, et al. Fracture Formation Mechanism of Volcanic Rocks in Xujiaweizi Fault Depression of Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2014, 46(6): 1816-1826.
[2] 张家政,崔金栋,杨荣国. 准噶尔盆地红山嘴油田石炭系火山岩裂缝储层特征[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1629-1637. Zhang Jiazheng, Cui Jindong, Yang Rongguo. Features of the Carboniferous Volcanic Fracture Reserviors in Hongshanzui Oilfield, Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1629-1637.
[3] 蒲静,秦启荣. 油气储层裂缝预测方法综述[J]. 特种油气藏,2008,15(3):9-13. Pu Jing, Qin Qirong. An Overview of Fracture Prediction Methods for Oil and Gas Reservoirs[J]. Special Oil and Gas Reservoirs, 2008, 15(3): 9-13.
[4] 苏培东,秦启荣,黄润秋. 储层裂缝预测研究现状与展望[J]. 西南石油学院学报,2005,27(5):14-17. Su Peidong, Qin Qirong, Huang Runqiu. Prospects and Status for the Study on Reservoir Fractures[J]. Journal of Southwest Petroleum Institute, 2005, 27(5): 14-17.
[5] 潘保芝,张丽华,单刚义. 裂缝和孔洞型储层孔隙模型的理论进展[J]. 地球物理学进展, 2006, 21(4): 1232-1237. Pan Baozhi, Zhang Lihua, Shan Gangyi. Progress in Porosity Model for Fractured and Vuggy Reservoirs[J]. Progress in Geophysics, 2006, 21(4): 1232-1237.
[6] 何雨丹,魏春光. 裂缝型油气藏勘探评价面临的挑战及发展方向[J]. 地球物理学进展,2007,22(2):537-543. He Yudan, Wei Chunguang. The Present Situation and Research Direction of Evaluation Methods in Fracture Type Reservoir[J]. Progress in Geophysics, 2007, 22(2): 537-543.
[7] 李健伟,王磊,陈利雯. 碳酸盐岩储层裂缝识别技术研究[J]. 工程地球物理学报, 2013, 10(6): 885-890. Li Jianwei, Wang Lei, Chen Liwen. Research of Fracture Identidication Technology on Carbonate Reservoir[J]. Chinese Journal of Engineering Geophysics, 2013, 10(6): 885-890.
[8] Feng Cuiju, Yan Weilin. Fracture Qualitative Iden-tification Using Conventional Logging Data[J]. Applied Mechanics and Materials, 2013, 316/317: 822-825.
[9] Saboorian-Jooybari H, Dejam M, Chen Z, et al. Comprehensive Evaluation of Fracture Parameters by Dual Laterolog Data[J]. Journal of Applied Geophysics, 2016, 131(6): 214-221.
[10] 罗利,胡培毅,周政英. 碳酸盐岩裂缝测井识别方法[J]. 石油学报, 2001, 22(3): 32-35. Luo Li, Hu Peiyi, Zhou Zhengying. Log Identification for Fracture in Carbonate[J]. Acta Petrolei Sinica, 2001, 22(3): 32-35.
[11] 张文静.小波多尺度分析方法识别储层裂缝[D]. 青岛:中国石油大学,2009. Zhang Wenjing. Identify Fracturewith Wavelet Multi-Scale Analysis Methodp[D]. Qingdao: China University of Petroleum, 2019.
[12] 张晓峰,潘保芝. 二维小波变换在成像测井识别裂缝中的应用研究[J]. 石油地球物理勘探, 2012, 47(1): 173-176. Zhang Xiaofeng, Pan Baozhi. Two-Dimensional Wavelet Transform to Identify Fractures in Imaging Logging[J]. Oil Geophysical Prospecting, 2012, 47(1): 173-176.
[13] Shen Huilin, Gao Songyang. Research on Fracture Identification Based on BP Neural Network[J]. Fault-Block Oil & Gas Field, 2007, 14(2): 60-62.
[14] 蒋健美. 川西DY地区须家河组裂缝识别方法研究[D].成都:成都理工大学, 2013. Jiang Jianmei. The Research on the Fracture Identification of Xujiahe Formation in DY Region in Western Sichuan[D]. Chengdu: Chengdu University of Techniques, 2013.
[15] 王永刚. 埕北地区碳酸盐岩储层裂缝识别与定量解释[J]. 新疆石油科技,2012,22(2):35-38. Wang Yonggang. Cheng-Bei Carbonate Reservoir Fracture Identification and Quantitative Interpretation[J]. Xinjiang Petroleum Science & Technology, 2012,22(2): 35-38.
[16] Yong Chaoxue, Lin Songcheng, Jian Yemou, et al. A New Fracture Prediction Method by Combining Genetic Algorithm with Neural Network in Low-Permeability Reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 121(2): 159-166.
[17] 孙建孟,刘坤,王艳,等. 泥页岩储层裂缝识别与有效性评价研究[J]. 测井技术, 2015, 39(5): 611-616. Sun Jianmeng, Liu Kun, Wang Yan, et al. Fracture Identification and Effectiveness Evaluation Research of Shale Reservoir[J]. Well Logging Technology, 2015, 39(5): 611-616.
[18] 戴俊生,汪必峰. 综合方法识别和预测储层裂缝[J]. 油气地质与采收率,2003,10(1):1-2. Dai Junsheng, Wang Bifeng. Integrated Approach of Identifying and Predicting Fracture in Reservoir[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(1): 1-2.
[19] 杨绪海,张晓春. 利用声成像测井数据实现岩石裂缝特征的自动识别[J]. 中国海上油气地质, 2000,12(6): 64-66. Yang Xuhai, Zhang Xiaochun. Automatic Identification of Rock Fractures Using Acoustic Image Logging[J]. China Offshore Oil and Gas, 2000, 12(6): 64-66.
[20] 陆敬安,伍忠良,关晓春,等. 成像测井中的裂缝自动识别方法[J]. 测井技术, 2004,28(2):115-117. Lu Jing'an, Wu Zhongliang, Guan Xiaochun, et al. Automatically Extract Fracture Parameters from Resistivity Images by Using Hough Transform[J]. WellLogging Technology, 2004, 28(2): 115-117.
[21] 赖富强.电成像测井处理及解释方法研究[D]. 青岛:中国石油大学,2011. Lai Fuqiang. Micro-Resistivity Image Logging Processing and Interpretation Methods Research[D]. Qingdao: China University of Petroleum, 2011.
[22] 王敏. 基于二维成像测井的裂缝性储层测井评价方法研究[D]. 青岛:中国石油大学,2010. Wang Min. Fractured Reservoir EvaluationUsing 2-D Imaging Logging Data[D]. Qingdao: China University of Petroleum, 2010.
[23] 张程恩. 成像测井裂缝识别与提取及裂缝参数计算方法研究[D].长春:吉林大学, 2012. Zhang Cheng'en. Study on Fracture Recognition and Exraction Based on Image Log Data Process and Fracture Parameters Caculation[D]. Changchun:Jilin University, 2012.
[24] Westermark R V, Scholes P. Fracture Identification in Openhole from a Cement Evaluation Tool[C]// Ventura. SPE California Regional Meeting. California: Society of Petroleum Engineers, 1987: 81-88.
[25] 李舟波,潘保芝,范晓敏. 地球物理测井数据处理与综合解释[M].北京:地质出版社,2008:150-151. Li Zhoubo, Pan Baozhi, Fan Xiaomin. Data Processing and Comprehensive Interpretation of Geophysical Logging Data[M]. Beijing: Geological Publishing House, 2008: 150-151.
[26] 张宇山. 多元线性回归分析的实例研究[J]. 科技信息,2009,9(9): 54-56. Zhang Yushan. A Case Study of Multiple Linear Regression Analysis[J]. Science & Technology Information, 2009, 9(9): 54-56.
[1] Liao Dongliang, Zeng Yijin. Establishment of Formation Shear Fracture Model by Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1268-1276.
[2] Deng Xinhui, Liu Cai, Guo Zhiqi, Liu Xiwu, Liu Yuwei. Full Wave Field Seismic Response Simulation and Analysis of Anisotropic Shale Reservoir in Luojia Area of Jiyang Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1231-1243.
[3] Zhang Bing, Guo Zhiqi, Xu Cong, Liu Cai, Liu Xiwu, Liu Yuwei. Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1244-1252.
[4] Zhu Xiaoying, Yang Hai, Kuang Xingtao, Peng Weiwei, Zhang Hongrui. Characteristics of Fault Structures in East Kunlun-Altyn Tagh Based on High-Precision Aeromagnetic Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 461-473.
[5] Liu Zongli, Wang Zhuwen, Liu Jinghua, Zhao Shuqin, Ou Weiming. Logging Response Characteristics and Reservoir Significance of Volcanic Rocks in the Eastern Sag of Liaohe Depression [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 285-297.
[6] Zhang Huanxu, Chen Shijia, Lu Jungang, Liu Chaowei, Chen Juan, Li Yong, Xu Kun. Migration of Oil in Tight Sandstones:Discussion from the Dynamics [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1341-1351.
[7] Li Zhenling, Shen Jinsong, Li Xining, Wang Lei, Dan Weining, Guo Sen, Zhu Zhongmin, Yu Renjiang. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1295-1307.
[8] Zhang Bowei, Fu Guang, Zhang Juhe, Hu Ming, Liu Junqiao, Wang Haoran. Fracture Development in Oil-Migrating Fault Transition Zones and Its Control on Hydrocarbon Migration and Accumulation: A Case Study of Es2 Oil Formation of Yilunpu Structure of Wen'an Slope of Jizhong Depression [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 370-381.
[9] Xu Hongjie, Hu Baolin, Zheng Jianbin, Liu Huihu, Zhang Wenyong, Zheng Kaige. Reservoir Characteristics and Their Lithofacies Controlling Effect of Coal-Bearing Mudstone in Huainan Coal Field [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 418-430.
[10] Li Yonggang. Classification Standard of Dense Volcanic Reservoirs and Potential Evaluation for Exploitation Targets in Songnan Gas Field [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 344-354.
[11] Liu Jingshou, Dai Junsheng, Xu Ke, Zhang Yi, Ding Wenlong. Method for the Characterization of the Evolution of Tectonic Fracture Attitudes and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 84-94.
[12] Li Bonan, Liu Cai, Guo Zhiqi. Estimation of Fractured Reservoir Parameters Based on Equivalent Media Model and Frequncy-Dependent AVO Inversion [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 234-244.
[13] Ju Yinjuan, Zhang Xiaoli, Zhang Yongshu, Chen Yan. Fracture Characteristics of Bedrock Reservoir in the North-Kunlun Faults Zone, Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1660-1671.
[14] Zhang Yuqing, Wang Hui, Fan Ting'en, Song Laiming, Nie Yan, Liang Xu, Chen Fei. Granite Buried Hill Reservoir Characterization and Modeling:Taking Offshore a Oilfield in Bohai Bay as an Example [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1312-1320.
[15] Liu Yunhua, Li Zhen, Mo Xuanxue, Huang Yu, Li Yuntao, Han Yixiao. Geological Characteristics of Skarn-Fracture Zone Altered Rock Type of the Kateba'asu Au-Cu Deposit in Western Tianshan Mountains in Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1368-1382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!