Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (4): 1268-1276.doi: 10.13278/j.cnki.jjuese.20170053

Previous Articles     Next Articles

Establishment of Formation Shear Fracture Model by Logging Data

Liao Dongliang1,2, Zeng Yijin1,2   

  1. 1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
  • Received:2017-11-01 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (21427812,41474108) and Scientific and Technological Project of Sinopec (P17014-9)

Abstract: The formation shear fracture model is an effective supplement to the extensional fracture model, which is helpful to improve the fracture mechanism of petroleum drilling and fracturing engineering. Using formation microScanner image (FMI) logging data we can determine the orientation, number and density of drilling induced fractures and shear fractures. Through the analysis of the theoretical research and influence factors on the shear fracture of shale formation and using the nonlinear assumption of internal friction coefficient and mineral content, we established the critical stress model of formation shear failure. It is found that the content of clay minerals, internal friction coefficient, cohesive strength and stress are the important factors for the shear fractures. Based on the statistical regression model between the internal friction coefficient (internal friction angle) and the shale content, the formation shear failure model is simplified, and the applicability of the model is enhanced. The actual data show that an inverse relationship exists between the critical stress calculated by the shear failure model and the number of drilling induced fractures. The actual data are in good agreement with the theoretical result.

Key words: formation microscanner image, shear fracture, extensional fracture, drilling induced fractures, internal friction angle

CLC Number: 

  • P631.8
[1] 赵金洲,任岚,胡永全,等. 裂缝性地层射孔井破裂压力计算模型[J]. 石油学报,2012,33(5):841-845. Zhao Jinzhou, Ren Lan, Hu Yongquan, et al. A Calculation Model of Breakdown Pressure for Perforated Wells in Fractured Formations[J]. Acta Petrolei Sinica, 2012, 33(5):841-845.
[2] 金衍,陈勉,张旭东. 天然裂缝地层斜井水力裂缝起裂压力模型研究[J]. 石油学报,2006,27(5):124-126. Jin Yan, Chen Mian, Zhang Xudong. Hydraulic Fracturing Pressure Models for Vertical Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2006, 27(5):124-126.
[3] 金衍,张旭东,陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报,2005,26(7):113-118. Jin Yan, Zhang Xudong, Chen Mian. Initiation Pressure Models for Hydraulic Fracturing of Directional Wells in Naturally Fractured Formation[J]. Acta Petrolei Sinica, 2005, 26(7):113-118.
[4] 谢海峰,饶秋华,谢强,等. 脆性岩石高温剪切(Ⅱ型)断裂的微观机理[J]. 中国有色金属学报,2008, 18(8):16-20. Xie Haifeng, Rao Qiuhua, Xie Qiang, et al. Plane Shear (Model Ⅱ) Fracture Experiment Analysis of Brittle Rock at High Temperature[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(8):16-20.
[5] 李守定,李晓,郭静芸,等. 岩石拉伸剪破裂试验研究[J]. 工程地质学报, 2014, 22(4):655-666. Li Shouding, Li Xiao, Guo Jingyun, et al. Research of Rock Failure Testing Under Combined Shear and Tension[J]. Journal of Engineering Geology, 2014, 22(4):655-666.
[6] 吴子科. 脆性岩石裂纹尖端扩展状态的混沌动力学分析[D]. 青岛:山东科技大学,2007. Wu Zhike. Chaotic Analysis on Extended State of Crack in Brittle Rock[D]. Qingdao:Shandong University of Science and Technology, 2007.
[7] 牛虎林,胡欣,徐志强,等. 基岩油气藏裂缝性储层的成像测井评价及裂缝预测[J]. 石油学报,2010, 31(2):264-269. Niu Hulin, Hu Xin, Xu Zhiqiang, et al. Evaluation of Imaging Logging and Fracture Prediction in Fractured Basement Reservoirs[J]. Acta Petrolei Sinica, 2010, 31(2):264-269.
[8] 周祥. 不同泥质含量砂岩三轴渗透试验研究[J]. 水文地质工程地质,2017, 44(1):84-90. Zhou Xiang. An Experimental Study on Permeability of Sandstone with Different Shale Contents Under 3-D Stress Conditions[J]. Hydrogeology & Engineering Geology, 2017, 44(1):84-90.
[9] 丁文龙,漆立新,吕海涛,等. 利用FMI资料分析塔河油田南部中-下奥陶统储层构造应力场[J]. 现代地质,2009, 23(5):852-859. Ding Wenlong, Qi Lixin, Lü Haitao, et al. Analysis of the Lower-Middle Ordovician Reservoir Tectonic Stress Field Using FMI Data in the South of Tahe Oilfield[J]. Geoscience, 2009, 23(5):852-859.
[10] 秦军. 利用成像测井技术识别钻井诱导缝[J]. 内蒙古石油化工,2006,32(10):116-117. Qin Jun. Using Imaging Logging to Recognize Drilling Induced Fractures[J]. Inner Mongolia Petrochemical Industry, 2006, 32(10):116-117.
[11] 谢冰,文龙,李梅. 川东北部飞仙关组裂缝发育状况分析[J]. 天然气勘探与开发,2007,30(1):38-44. Xie Bing, Wen Long, Li Mei. Analysis of Fracture Development in Feixianguan Formation, North of East Sichuan[J]. Natural Gas Exploration and Development, 2007, 30(1):38-44.
[12] 宋鹏,王府断陷火石岭组火山岩储层裂缝特征与分布规律[J]. 世界地质,2015,23(3):716-725. Song Peng. Fracture Characteristics and Distribution of Volcanic Reservoir of Huoshiling Formation in Wangfu Fault Depression[J]. Global Geology, 2015, 23(3):716-725.
[13] 王振宇,刘超,张云峰,等. 库车坳陷K区块冲断带深层白垩系致密砂岩裂缝发育规律、控制因素与属性建模研究[J]. 岩石学报,2016, 32(3):865-876. Wang Zhenyu, Liu Chao, Zhang Yunfeng, et al. A Study of Fracture Development,Controlling Factor and Property Modeling of Deep-Lying Tight Sandstone in Cretaceous Thrust Belt K Region of Kuqa Depression[J]. Acta Petrologica Sinica, 2016, 32(3):865-876.
[14] 王玉华. 电成像测井在大庆火成岩储层解释中的应用[J]. 大庆石油地质与开发, 2008, 27(6):128-130. Wang Yuhua. Application of Electrical Imaging Logging in the Well Logging Interpretation of Igneous Rock Reservoir in Daqing[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(6):128-130.
[15] 廖东良,肖立志,张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4):37-41. Liao Dongliang, Xiao Lizhi, Zhang Yuanchun. Evaluation Model for Shale Brittleness Index Based on Mineral Content and Fracture Toughness[J]. Petroleum Drilling Techniques, 2014, 42(4):37-41.
[16] 陈颙, 黄庭芳, 刘恩儒. 岩石物理学[M].合肥:中国科技大学出版社, 2009. Chen Yong, Huang Tingfang, Liu Enru. Petrophysics[M]. Hefei:University of Science and Technology of China Press,2009.
[17] Evans B, Fredrich J, Wong T F. The Brittle-Ductile Transition in Rocks:Recent Experiment and Theoretical Progress[J]. America Goephys Union, 1990, 56:1-20.
[18] Rickman R, Mullen M, Petre E, et al. A Practical Use of Shale Petrophysics for Stimulation Design Optimization:All Shale Plays are not Clones of the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Denver:SPE, 2008:21-24.
[19] Jarvie D M, Hill R J, Ruble H J, et al. Uncon-ventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment[J]. AAPG Bulletin, 2007, 91(4):475-499.
[20] Dan B, Simon H, Jennifer M, et al. Preophysical Evaluation for Enhancing Hydraulic Stimulation in Horizontal Shale Gas Wells[C]//SPE Annual Technical Conference and Exhibition. Florence:SPE, 2010:19-22.
[21] 王冠民,熊周海,张婕. 岩性差异对泥页岩可压裂性的影响分析[J].吉林大学学报(地球科学版),2016,46(4):1080-1089. Wang Guanmin, Xiong Zhouhai, Zhang Jie. The Impact of Lithology Differences to Shale Fracturing[J]. Journal of Jilin University (Earth Science Edition),2016,46(4):1080-1089.
[22] 王晓杰,彭仕宓,吕本勋,等. 用正交偶极阵列声波测井研究地层地应力场[J]. 中国石油大学学报(自然科学版),2008, 32(4):42-46. Wang Xiaojie, Peng Shimi, Lü Benxun, et al. Researching Earth Stress Field Using Cross-Dipole Acoustic Logging Technology[J]. Journal of China University of Petroleum, 2008, 32(4):42-46.
[1] Zhang Bo, Cao Hongkai, Sun Jianmeng, Zhang Pengyun, Yan Weichao. Numerical Simulation of Response Characteristics of Array Induction Logging in Heavy Oil Thermal Recovery Formation [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1277-1286.
[2] Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan. A Method for Improving Accuracy of Reservoir Fracture Identification [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 298-306.
[3] Li Zhenling, Shen Jinsong, Li Xining, Wang Lei, Dan Weining, Guo Sen, Zhu Zhongmin, Yu Renjiang. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1295-1307.
[4] Xiao Fan, Chen Jianguo. Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1319-1330.
[5] Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan. A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 899-906.
[6] JiangYanjiao, Sun Jianmeng, Gao Jianshen, Shao Weizhi, Chi Xiurong, Chai Xiyuan. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 265-278.
[7] Gao Jianshen, Sun Jianmeng, Jiang Yanjiao, Cui Likai. Effect of Electrode Array Structures in Laterolog and a New Array Measurement Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1874-1883.
[8] Pan Baozhi, Jiang Bici, Liu Wenbin, Fang Chunhui, Zhang Rui. Gas-Bearing Logging Features and Quantitative Evaluation for Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 930-937.
[9] Zhang Xinpei, Yu Xuefeng. Using Geophysical Information to Describe Effective Reservoirs of Archean Buried Hill [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 270-278.
[10] Zhao Jun, Dai Xinyun, Gu Li, Qi Xinzhong, Chen Weizhong. Method of Permeability Model Establishment Based on the Complex Reservoir Controlled by Particle-Size [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 279-285.
[11] Zheng Xiangwei, Wu Jian, He Shenglin, Hu Xiangyang, Liang Yunan. Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 286-294.
[12] Jin Bo, Huang Xianxiong, Chang Guangfa, Zhang Shengbin, Fu Haibo, Li Tiezhu. Types and Distribution of Carboniferous Carbonate Reservoirs in Southern Д Area of Pre-Caspian Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 2042-2050.
[13] Zhang Zhongqing, Pang Bingqiang. A Novel Approach for Electromagnetic Logging While Drilling Data Processing [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1720-1726.
[14] Song Yanjie, Jiang Yanjiao, Song Yang, Zhang Yini. Experimental on the Influencing Factors of m and n of Low Resistivity Oil Reservoirs in Southern Gulong Area [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 704-714.
[15] Yang Zhen,Yang Jinzhou,Han Laiju. Numerical Simulation and Application of Azimuthal Propagation Resistivity Imaging While Drilling [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035-2043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Song Mingchun, Li Jie, Li Shiyong, Ding Zhengjiang, Tan Xianfeng, Zhang Zhaolu, Wang Shijin. Late Mesozoic Thermal Upwelling-Extension Structure and Its Dynamics Background in Eastern Shandong Province[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 941 -964 .
[2] Zhao Qianping, Zhang Lixia, Yin Jintao, Yu Yuxi, Jiang Chengfu, Wang Hui, Gao Chao. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers: An Example from Zhangjiatan Lacustrine Shale[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1018 -1029 .
[3] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105 -1120 .