[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China[J]. Science & Technology Review, 2012, 30(32): 25-31.
[2] 康玲, 王时龙, 李川. 增强型地热系统(EGS)的人工热储技术[J]. 地热能, 2009(2):13-16. Kang Ling, Wang Shilong, Li Chuan. Reservoir Technology in EGS[J]. Geothermal Energy, 2009(2): 13-16.
[3] Tester J W, Anderson B J, Batchelor A S, et al. The Future of Geothermal Energy-Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[R]. Boston: Massachusetts Institute of Technology, 2006.
[4] 许天福,张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology Progress in an Enhanced Geothermal System (Hot Dry Rock)[J]. Science & Technology Review, 2012, 30(32): 42-45.
[5] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An Estimation of HDR Resources in China's Mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811.
[6] 张建英. 增强型地热系统(EGS)资源开发利用研究[J]. 中国能源, 2011, 33(1):29-32. Zhang Jianying. Research on Developing Enhanced Geothermal System Resource[J]. Energy of China, 2011, 33(1):29-32.
[7] Zimmermann G, Reinicke A. Hydraulic Stimulation of a Deep Sandstone Reservoir to Develop an Enhanced Geothermal System: Laboratory and Field Experiments[J]. Geothermics, 2010, 39(1): 70-77.
[8] Portier S, Vuataz F D, Nami P, et al. Chemical Stimulation Techniques for Geothermal Wells: Experiments on the Three-Well EGS System at Soultz-Sous-Forêts, France[J]. Geothermics, 2009, 38(4): 349-359.
[9] Bradford J, Ohren M, Osborn W L, et al. Thermal Stimulation and Injectivity Testing at Raft River, ID EGS Site[C]//Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2014.
[10] Pine R J, Batchelor A S. Downward Migration of Shearing in Jointed Rock During Hydraulic Injections[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 249-263.
[11] Brown D W. Hot Dry Rock Geothermal Energy: Important Lessons from Fenton Hill[C]//Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2009.
[12] Ziagos J, Phillips B R, Boyd L, et al. A Technology Roadmap for Strategic Development of Enhanced Geothermal System[C]//Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[13] Tester J W, Albright J N. Hot Dry Rock Energy Extraction Field Test: 75 Days of Operation of a Prototype Reservoir at Fenton Hill, Segment 2 of Phase I[R]. Stanford: Los Alamos Scientific Laboratory, 1979.
[14] Whetten J T, Dennis B R, Dreesen D S, et al. The U S Hot Dry Rock Project[J]. Geothermics, 1987, 16(4): 331-339.
[15] Batchelor A S, Baria R, Hearn K. Monitoring the Effects of Hydraulic Stimulation by Microseismic Event Location: A Case Study[C]//Proceedings, SPE Annual Technical Conference and Exhibition. San Francisco: Society of Petroleum Engineers, 1983.
[16] Kolditz O, Clauser C. Numerical Simulation of Flow and Heat Transfer in Fractured Crystalline Rocks: Application to the Hot Dry Rock site in Rosemanowes (U.K.)[J]. Geothermics, 1998, 27(1): 1-23.
[17] Richards H G. Granite-Water Reactions in an Experimental Hot Dry Rock Geothermal Reservoir, Rosemanowes Test Site, Cornwall, U K[J]. Applied Geochemistry, 1992, 7(3): 193-222.
[18] Genter A,Evans K,Cuenot N,et al. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342: 502-516.
[19] Baria R, Michelet S, Baumgaertner J, et al. Microseismic Monitoring of the World's Largest Potential HDR Reservoir[C]//Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2004.
[20] Valley B, Dezayes C, Genter A. Multi-Scale Fracturing in the Soultz-Sous-Forêsts Basement from Borehole Images Analyses[C]//Proceedings, Soultz Scientific Meeting. Orleans: Geothermal Energy Division, 2007.
[21] Schindler M, Nami P, Schellschmidt, et al. Correlation of Hydraulic and Seismic Observations During Stimulation Experiments in the 5 km Deep Crystalline Reservoir at Soultz[C]//EHDRA Soultz Scientific Meeting. Soultz: [s. n.], 2008.
[22] Tenma N, Yamaguchi T, Zyvoloski G. The Hijiori Hot Dry Rock Test Site, Japan: Evaluation and Optimization of Heat Extraction from a Two-Layered Reservoir[J]. Geothermics, 2008, 37: 19-52.
[23] Tenma N, Yamaguchi T, Oikawa Y, Zyvoloski G. Comparison of the Deep and the Shallow Reservoirs at the Hijiori HDR Test Site Using FEHM Code[C]//Proceedings, Twenty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2001.
[24] Swenson D, Schroeder R, Shinohara N, et al. Analyses of the Hijiori Long Term Circulation Test[C]//Proceedings, Twenty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 1999.
[25] Yamaguchi S, Akibayashi S, Rokugawa S, et al. The Numerical Modeling Study of the Hijiori HDR Test Site[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku: Akita University, 2000.
[26] Kaieda H, Ito H, Kiho K, et al. Review of the Ogachi HDR Project in Japan[C]//Proceedings, World Geothermal Congress. Antalya:[s.n.] , 2005.
[27] Kitano K, Hori Y, Kaieda H. Outrline of the Ogachi HDR Project and Character of the Reservoirs[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.
[28] Kaieda H, Jones R H, Moriya H, et al. Ogachi HDR Reservoir Evaluation by AE and Geophysical Methods[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.
[29] Shin K, Ito H, Oikawa Y. Stress State at the Ogachi Site[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.
[30] Wyborn D. Update of Development of the Geothermal Field in the Granite at Innamincka, South Australia[C]//Proceedings, World Geothermal Congress. Bali:Geodynamics Limited, 2010.
[31] Wyborn D, Graaf L D, Hann S. Enhanced Geothermal Development in the Cooper Basin Area, South Australia[J]. GRC Transactions, 2005, 29: 151-156.
[32] Faulds J E, Coolbaugh M F, Benoit D, et al. Structural Control of Geothermal Activity in the Northern Hot Springs Mountains, Western Nevada: The Tale of Three Geothermal Systems (Brady's, Desert Peak and Desert Queen)[J]. GRC Transactions, 2010, 34: 675-683.
[33] Zemach E, Drakos P, Robertson-Tait A. Feasibility Evaluation of an "In-Field" EGS Project at Desert Peak, Nevada[J]. GRC Transactions, 2009, 33: 285-295.
[34] Chabora E, Zenach E, Spielman P, et al. Hydraulic Stimulation of Well 27-15, Desert Peak Geothermal Field, Nevada, USA[C]//Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2012.
[35] Rutqvist J, Dobson P F, Garcia J, et al. The Northwest Geysers EGS Demonstration Project, California: Pre-Stimulation Modeling and Interpretation of the Stimulation[J]. Mathematical Geosciences, 2015, 47(1): 3-29.
[36] Rinaldi A P, Rutqvist J, Sonnenthal E L, et al. Coupled THM Modeling of Hydroshearing Stimulation in Tight Fractured Volcanic Rock[J]. Transport in Porous Media, 2015, 108: 131-150.
[37] Plummer M, Palmer C, Podgorney R, et al. Hydraulic Response to Thermal Stimulation Efforts at Raft River Based on Stepped Rate Injection Testing[C]//Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2014.
[38] Bradford J, McLennan J, Moore J, et al. Recent Developments at the Raft River Geothermal Field[C]//Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.
[39] Plummer M, Huang H, Podgorney R, et al. Reservoir Response to Thermal and High-Pressure Well Stimulation Efforts at Raft River, Idaho[C]//Proceedings, Fortieth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2015. |