Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (6): 1855-1864.doi: 10.13278/j.cnki.jjuese.201606304
Previous Articles Next Articles
Liu Chengming, Wang Deli, Hu Bin, Wang Tong
CLC Number:
[1] Canning A, Gardner G H F. Regularizing 3-D Data Sets with DMO[J]. Geophysics, 2012, 61(4):1103-1114. [2] Chemingui N, Chemingui N. Handling the Irregular Geometry in Wide-Azimuth Surveys[J]. Seg Technical Program Expanded Abstracts, 1999, 15(1):2106. [3] Spitz S. Seismic Trace Interpolation in the F-X Do-main[J]. Geophysics, 2012, 56(6):785. [4] Gulunay N. Unaliased f-k Domain Trace Interpo-lation (UFKI)[J]. Seg Technical Program Expanded Abstracts, 1996, 15(1):2106. [5] Herrmann F J, Gilles H. Non‐Parametric Seismic Data Recovery with Curvelet Frames[J]. Geophysical Journal International, 2008, 173(1):233-248. [6] Wang D, Bao W, Xu S,et al. Seismic Data Inter-polation with Curvelet Domain Sparse Constrained Inversion[J]. Journal of Seismic Exploration, 2014, 23(1): 89-102. [7] 路交通, 曹思远, 董建华. 基于稀疏变换的地震数据重构方法[J]. 物探与化探, 2013, 37(1): 175-179. Lu Jiaotong, Cao Siyuan, Dong Jianhua. A Study of Seismic Data Recovery Based on Sparse Transform[J]. Geophysical & Geochemical Exploration, 2013, 37(1): 175-179. [8] Wang D L, Tong Z F, Tang C, et al. An Iterative Curvelet Thresholding Algorithm for Seismic Random Noise Attenuation[J]. Applied Geophysics, 2010, 7(4): 315-324. [9] 刘财,崔芳姿,刘洋,等.基于低信噪比条件下新型Seislet变换的阈值去噪方法[J].吉林大学学报(地球科学版),2015,45(1):293-301. Liu Cai, Cui Fangzi, Liu Yang, et al. Threshold Denoising Method Based on New Seislet Transform in the Condition of Low SNR[J]. Journal of Jilin University (Earth Science Edition),2015,45(1):293-301. [10] Candè E J, Wakin M B. An Introduction to Compre-ssive Sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. [11] Hennenfent G, Herrmann F J. Simply Denoise: Wa-vefield Reconstruction via Jittered Undersampling[J]. Geophysics, 2008, 73(3): V19-V28. [12] Herrmann F J, Wang D, Hennenfent G, et al. Cur-velet-Based Seismic Data Processing: A Multiscale and Nonlinear Approach[J]. Geophysics, 2008, 73(1):2220. [13] Kutyniok G, Lim W Q. Compactly Supported Shear-lets Are Optimally Sparse[J]. Journal of Approximation Theory, 2011, 163(11): 1564-1589. [14] Kittipoom P, Kutyniok G, Lim W Q. Construction of Compactly Supported Shearlet Frames[J]. Constructive Approximation, 2012, 35(1): 21-72. [15] Daubechies I, Fornasier M, Loris I. Accelerated Pro-jected Gradient Method for Linear Inverse Problems with Sparsity Constraints[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 746-792. [16] Guo K, Kutyniok G, Labate D. Sparse Multidimen-sional Representations Using Anisotropic Dilation and Shear Operators[C]//International Conference on the Interaction. Athens: Wavelets and Splines, 2005:189-201. [17] Labate D, Kutyniok G. Sparse Multidimensional Re-presentation Using Shearlets[C]//Proceedings of SPIE.[S. l.]: The International Society for Optical Engineering, 2005, 5914(1):254-262. [18] Kutyniok G, Shahram M, Zhuang X. ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm[J]. Siam Journal on Imaging Sciences, 2011, 5(4):1291-1332. [19] Kittipoom P, Kutyniok G, Lim W Q. Construction of Compactly Supported Shearlet Frames[J]. Constructive Approximation, 2012, 35(1): 21-72. [20] Vogel C R. Computational Methods for Inverse Pro-blems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2002. [21] Daubechies I, Defrise M, Mol C D. An Iterative Th-resholding Algorithm for Linear Inverse Problems with a Sparsity Constrains[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413-1457. |
[1] | Wang Xiannan, Liu Sixin, Cheng Hao. Application of Shearlet Transform for Suppressing Random Noise in GPR Data [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1855-1864. |
[2] | Liu Zuodong, Wang Hongjun, Ma Feng, Wu Zhenzhen, Du Shang, Wang Yonghua. Resource Assessment of Heavy Oil Potential Based on Spatial Grid Interpolation Method:A Case Study of Cretaceous Heavy-Oil Deposits in Zagros Fold Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1668-1677. |
[3] | Yu Chu, Zhang Yilong, Meng Ruifang, Cao Wengeng. Optimization Design of the Shallow Groundwater Dynamic Monitoring Network in Hetao Plain [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1173-1179. |
[4] | Wang Zhaoguo, Cheng Shunyou, Liu Cai. Error Analysis of Several Two-Dimensional Interpolation Methods in the Geophysical Exploration [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1997-2004. |
[5] | Xu Minghua, Li Rui, Lu Jiaotong, Meng Shan,Gong Xinglin. Study on the Recovery of Aliasing Seismic Data Based on the Compressive Sensing Theory [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 282-290. |
[6] | Ye Pei,Li Qingchun. Improvements of Linear Traveltime Interpolation Ray Tracing for the Accuracy and Efficiency [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 291-298. |
[7] | NAI Lei, PENG Wen, YUAN Ming-zhe, ZHOU Neng-juan. Ground Collapse Prediction of Mined-Out Area Based on EMD and WLS-SVM [J]. J4, 2011, 41(3): 799-804. |
[8] | LI Xiang-ling, ZHANG Ying-hui, YANG Shan-mou, YUAN Feng, ZHOU Tao-fa. Comparison of Typical Interpolation Methods for Pollution Evaluation of Soil Heavy Metals in Yicheng District, Hefei [J]. J4, 2011, 41(1): 222-227. |
[9] | ZHANG Ji-feng, TANG Jing-tian, YU Yan, LIU Chang-sheng. Finite Element Numerical Simulation on Line Controlled Source Based on Quadratic Interpolation [J]. J4, 2009, 39(5): 929-935. |
[10] | ZHANG Dong-liang, SUN Jian-guo. Interpolation Mapping in F-K Demigration [J]. J4, 2009, 39(4): 749-754. |
[11] | HAN Fu-xing,SUN Jian-guo,YANG Hao. Ray-Tracing of Wavefront Construction by Bicubic Convolution Interpolation [J]. J4, 2008, 38(2): 336-0340. |
[12] | SUN Jian-guo. F-K Demigration in Media with Constant Velocity:Basic Concepts, Formulas, and Applications in Inhomogeneous Media [J]. J4, 2008, 38(1): 135-0143. |
[13] | WENG Ai-hua,WANG Xue-qiu. Forward Simulation with High Accuracy of Ground Nuclear Magnetic Resonance [J]. J4, 2007, 37(3): 620-0623. |
[14] | XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method [J]. J4, 2005, 35(04): 515-0519. |
|