Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (3): 773-783.doi: 10.13278/j.cnki.jjuese.20170304

Previous Articles     Next Articles

Temperature Tracing Method for Groundwater Flux Under Surface Warming

Dong Linyao1,2, Ren Hongyu1,2, Lei Junshan3, Liu Jigen1,2   

  1. 1. Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China;
    2. Research Center on Mountain Torrents and Geological Disaster Prevention, Ministry of Water Resources, Wuhan 430010, China;
    3. Changjiang Water Resources Protection Institute, Changjiang Water Resources Commission, Wuhan 430051, China
  • Received:2017-12-15 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China (41501037) and Technology Demonstration Project of Ministry of Water Resources(SF-201806)

Abstract: In order to construct the technical system of groundwater velocity calculation using heat Abstract:A least square solver was presented for groundwater flux estimation in one-dimensional conduction advection equation solved numerically with MacCormack scheme. This approach was utilized to estimate the groundwater fluxes of the observed borehole under the effect of ground surface temperature (GST) in both rural and urban areas in Leizhou Peninsula, China. The estimated average groundwater recharge rate is 0.796 m/a, while the average discharge rate is 0.269 m/a. The groundwater recharges occur in the north part of the study area; while the discharges occur near Nansan, Donghai and Luzhou Islands, which fit favorably with the local groundwater flow pattern. Relatively high correlations and low RMSE were detected between the observed and computed borehole temperature-depth profiles, indicating that the estimation is reasonable. The sensitivity analysis of surface temperature and thermal diffusivity of geological bodies and GST indicates that the evaluation of subsurface heat island effects is very important for improving the precision of groundwater flux estimation by using borehole temperatures.

Key words: heat tracer, groundwater flux, surface warming, numerical solution, Leizhou Peninsula

CLC Number: 

  • P641.2
[1] 吴志伟, 宋汉周. 地下水温度示踪理论与方法研究进展[J].水科学进展, 2011,22(5):733-740. Wu Zhiwei, Song Hanzhou. Temperature as a Groundwater Tracer:Advances in Theory and Methodology[J]. Advances in Water Science, 2011,22(5):733-740.
[2] Anderson M P. Heat as a Ground Water Tracer[J]. Ground Water, 2005, 43(6):951-968.
[3] Taniguchi M, Shimada J, Tanaka T, et al. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:1:An Effect of Linear Increase in Surface Temperature Caused by Global Warming and Urbanization in Tokyo, Metropolitan Area, Japan[J]. Water Resource Research, 1999, 35(5):1507-1517.
[4] Taniguchi M, Uemura T, Jago-on K. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities[J]. Vadose Zone Journal, 2007, 6:591-596.
[5] Anibas C, Fleckenstein J H, Volze N, et al. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange[J]. Hydrological Processes, 2009, 23:2165-2177.
[6] 马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J].地质科技情报, 2013,32(2):131-137. Ma Rui, Dong Qiming, Sun Ziyong, et al. Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review[J]. Geological Science and Technology Information, 2013,32():131-137.
[7] 朱静思, 束龙仓, 鲁程鹏. 基于热追踪方法的河道垂向潜流通量的非均质性研究[J]. 水利学报, 2013,44(7):818-825. Zhu Jingsi, Shu Longcang, Lu Chengpeng. Study on the Heterogeneity of Vertical Hyporheic Flux Using a Heat Tracing Method[J]. Shuili Xuebao, 2013,44(7):818-825.
[8] 李英玉, 赵坚, 吕辉, 等. 河岸带潜流层温度示踪流速计算方法[J]. 水科学进展, 2016, 27(3):423-429. Li Yingyu, Zhao Jian, Lü Hui, et al. Investigation on Temperature Tracer Method Calculated Flow Rate of Hyporheic Layer in Riparian Zone[J]. Advances in Water Science, 2016, 27(3):423-429.
[9] Taniguchi M. Evaluation of Vertical Groundwater Fluxes and Thermal Properties of Aquifers Based on Transient Temperature-Depth Profiles[J]. Water Resources Research, 1993, 29(7):2021-2026.
[10] Constantz J, Su G W, Seymour D, et al. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperature[J]. Ground Water, 2004, 42(6/7):890-902.
[11] 李端有, 陈鹏霄, 王志旺. 温度示踪法渗流监测技术在长江堤防渗流监测中的应用初探[J]. 长江科学院院报, 2000, 17(增刊):48-51. Li Duanyou, Chen Pengxiao, Wang Zhiwang. Application of Temperature Indication Method in Seepage Monitoring of Yangtze River Levee[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(Sup.):48-51.
[12] 董海洲, 陈建生. 利用温度示踪方法探测基坑渗漏[J]. 岩石力学与工程学报, 2004, 23(12):2085-2090. Dong Haizhou, Chen Jiansheng. Study on Groundwater Leakage of Foundation Pit with Temperature Tracer Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(12):2085-2090.
[13] 王新建, 潘纪顺. 堤坝多集中渗漏通道位置温度探测研究[J]. 岩土工程学报, 2010, 32(11):1800-1805. Wang Xinjian, Pan Jishun. Location Detection of Concentrated-Leakage Passages in Dam by Groundwater Temperature[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11):1800-1805.
[14] Bredehoeft J D, Papadopulos I S. Rates of Vertical Groundwater Movement Estimated from the Earth's Thermal Profile[J]. Water Resource Research, 1965, 1(2):325-328.
[15] Taniguchi M, Shimada J, Uemura T. Transient Effects of Surface Temperature and Groundwater Flow on Subsurface Temperature in Kumamoto Plain, Japan[J]. Physics and Chemistry of the Earth, 2003, 28:477-486.
[16] Taniguchi M, Williamson D R, Peck A J. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow:2:An Effect of Step Increase in Surface Temperature Caused by Forest Clearing in Southwest Western Australia[J]. Water Resources Research, 1999, 35(5):1519-1530.
[17] Menberg K, Blum P, Kurylyk B L, et al. Observed Groundwater Temperature Response to Recent Climate Change[J]. Hydrology and Earth System Sciences, 2014, 11(3):4453-4466.
[18] Kurylyk B L, Macquarrie K T. A New Analytical Solution for Assessing Climate Change Impacts on Subsurface Temperature[J]. Hydrological Processes, 2014, 28(7):3161-3172.
[19] Keshari A K, Koo M. A Numerical Model for Estimating Groundwater Flux from Subsurface Temperature Profiles[J]. Hydrological Processes, 2010, 21(25):3440-3448.
[20] 吴志伟, 宋汉周. 基于Lu模型的浅部地温场与渗流场耦合研究[J]. 水利学报, 2015, 46(3):326-333. Wu Zhiwei, Song Hanzhou. Study on Shallow Geothermal Field and Seepage Field Coupling Based on Lu Model[J]. Shuili Xuebao, 2015, 46(3):326-333.
[21] Zhou X, Chen M, Liang C. Optimal Schemes of Groundwater Exploitation for Prevention of Seawater Intrusion in the Leizhou Peninsula in Southern China[J]. Environmental Geology, 2003, 43(8):978-985.
[22] Stallman R W. A Multivariate Statistical Approach to Spatial Representation of Groundwater Contamination Using Hydrochemistry and Microbial Community Profiles[J]. Environmental Science Technology, 2005, 39:7551-7559.
[23] Stallman R W. Computation of Ground-Water Velocity from Temperature Data, Washington, DC, USA[C]//Ray Bentall. Methods of Collecting and Interpreting Ground-Water Data. Washington:U. S. Government Printing Office, 1963:36-46.
[24] Marquardt D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters[J]. SIAM Journal of Applied Mathematics, 1963, 11(2):431-441.
[25] Smerdon J E, Pollack H N, Cermak V, et al. Daily, Seasonal, and Annual Relationships Between Air and Subsurface Temperatures[J]. Journal of Geophysical Research-Atmospheres, 2006, 111:D07101.
[26] Hachem S, Duguay C R, Allard M. Comparison of MODIS-Derived Land Surface Temperatures with Near-Surface Soil and Air Temperature Measurements in Continuous Permafrost Terrain[J]. Cryosphere, 2012, 6(1):51-69.
[27] Chen Y C, Chiu H W, Su Y F. Does Urbanization Increase Diurnal Land Surface Temperature Variation? Evidence and Implications[J]. Landscape and Urban Planning, 2017, 157:247-258.
[28] Taylor C A, Stefan H G. Shallow Groundwater Temperature Response to Climate Change and Urbanization[J]. Journal of Hydrology, 2009, 375:601-612.
[29] 赵勇胜, 杨元元, 高鹏龙, 等. 多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤效果[J/OL]. 吉林大学学报(地球科学版). doi:10.13278/j.cnki.jjuese.20180047. Zhao Yongsheng, Yang Yuanyuan, Gao Penglong, et al. Transport Characteristics of Steam and Steam Remediatation of Chlorobenzene Contaminated Soil[J/OL]. Journal of Jinlin University(Earth Science Edition). doi:10.13278/j.cnki.jjuese.20180047.
[1] Chen Xiong, Zhang Yan, Wang Yiwei, Ye Shujun, Wu Jichun, Yu Jun, Gong Xulong. Numerical Simulation of Three Dimensional Groundwater Flow in Three Coastal Cities of North Jiangsu [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1434-1450.
[2] Huang Xing, Lu Ying, Liu Xiao, Duan XiaoFei, Zhu Limin. Impact of Groundwater Level Rising on Suspended Solids Clogging During Artificial Recharge [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1810-1818.
[3] Liu Guoqing, Wu Shiqiang, Fan Ziwu, Zhou Zhifang, Xie Chen, Wu Jingxiu, Liu Yang. Analytical Derivation on Recharge and Periodic Backwashing Process and the Variation of Recharge Pressure [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1799-1807.
[4] Yu Peng, Ma Teng, Tang Zhonghua, Zhou Wei. Feasibility of Oilfield Wastewater Disposal in the Underpressure System of Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 211-219.
[5] Huang Xiudong, Shu Longcang, Cui Junling,Tong Kun,Zhou Qingpeng. Test on the Characteristic of Physical Clogging During Groundwater Artificial Recharge and Derivation of Percolation Empirical Formula [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1966-1972.
[6] Chen Rongbo,Shu Longcang,Lu Chengpeng,Li Wei. Experimental Study on the Characteristic Parameters Variation of the Aquifer Caused by Aquifer Compaction [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1958-1965.
[7] He Yujiang, Lin Wenjing, Wang Guiling. In-Situ Monitoring on the Soil Water-Heat Movement of Deep Vadose Zone by TDR100 System [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1972-1979.
[8] Liu Changjun, Zhao Hua, Zhang Shunfu, Ding Liuqian. Finite Element Analysis on Unsteady Seepage Field of Groundwater Reservoir of Tailan River During the Pumping Water of the Radiation Well [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 922-930.
[9] Jiang Si-min, Wang Pei, Shi Xiao-qing,Zheng Mao-hui. Groundwater Contaminant Source Identification by Hybrid Hooke-Jeeves and Attractive Repulsive Particle Swarm Optimization Method [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1866-1872.
[10] SU Xiao-si, GU Xiao-xi, MENG Jing-ying, ZHANG Wen-jing, WANG Han-mei, JIAO Xun. Fate and Transptort Simulation of Multi-Component Solute Under Artificial Recharge Conditions [J]. J4, 2012, 42(2): 485-491.
[11] WANG Zi-jia, DU Xin-qiang, YE Xue-yan, SONG Xiao-ming, ZHANG Jia-shuang, GAO Cui-ping. Suspended Solid Surface Clogging During Urban Stormwater Groundwater Recharge [J]. J4, 2012, 42(2): 492-498.
[12] ZHAI Yuan-zheng, WANG Jin-sheng, HUAN Huan, TENG Yan-guo. Groundwater Dynamic Equilibrium Evidence for Changes of Renewability of Groundwater in Beijing Plain [J]. J4, 2012, 42(1): 198-205.
[13] LU Ying, DU Xin-qiang, CHI Bao-ming, YANG Yue-suo, LI Sheng-tao, WANG Zi-jia. The Porous Media Clogging Due to Suspended Solid During the Artificial Recharge of Groundwater [J]. J4, 2011, 41(2): 448-454.
[14] HU Ji-hua,ZHANG Yan-jun,YU Zi-wang,WU Gang,YANG Xiao-ying,NI Fu-quan. Groundwater Flow Transfixion of Groundwater Source Heat Pump System and Its Influence on Temperature Field [J]. J4, 2008, 38(6): 992-0998.
[15] YE Dong-cheng, MU Shan, TAO Yue-zan. Stream-Water Quality Modelling with Influence of Groundwater Recharge [J]. J4, 2008, 38(4): 644-0648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!