Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1890-1896.doi: 10.13278/j.cnki.jjuese.20200225

Previous Articles     Next Articles

Surface Wave Attenuation Method Using Forward Modeling

Zhang Zhili1, Han Fuxing2, Sun Wenyan1, Wang Yi1, Yang Anqi1, Jiao Yanyan1, Xue Shigui1   

  1. 1. SINOPEC Geophysical Research Institute, Nanjing 211103, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-09-20 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (42074150), the National Key R & D Project (2017YFC0601305), the Joint Fund for Enterprise Innovation and Development of National Natural Science Foundation of China (U19B6003-04-01) and the Major National Science and Technology Project (2016ZX05014-001-001)

Abstract: Rayleigh wave is a P-SV surface wave distributed near the free surface. It has the characteristics of strong amplitude, low frequency and dispersion, and is commonly used in engineering geophysical exploration. However, in oil and gas exploration and deep exploration, it is often a kind of ‘interference’ waves that affects the signal-to-noise ratio of seismic data. Therefore, denoising processing is required. The authors combine engineering geophysical prospecting methods with oil geophysical exploration technologies to obtain a high precision near-surface model by surface wave dispersion curve inversion, and then, carry out the forward modeling of surface wave on the basis of the three-dimensional near-surface shear wave velocity model. The surface wave is subtracted by the method of model matching subtraction. By this method, the influence of surface wave can be minimized, and the shortcomings of the conventional surface wave attenuation methods can be avoided to certain extent, such as damaging the effective wave, losing low-frequency weak information, narrowing the effective frequency band of data, and negatively affecting seismic structure interpretation and inversion. The effectiveness of this method has been verified by practical applications.

Key words: surface wave, dispersion curve, inversion, forward

CLC Number: 

  • P631.4
[1] 金旭, 傅维洲. 固体地球物理学基础[M]. 长春:吉林大学出版社, 2003. Jin Xu, Fu Weizhou. Fundamentals of Solid Geophysics[M]. Changchun:Jilin University Press, 2003.
[2] 杨兆斌, 张铭记, 贾正虹. 时频-炮检距域面波衰减方法及应用[J]. 物探化探计算技术, 2011, 33(1):30-35. Yang Zhaobin, Zhang Mingji, Jia Zhenghong. Time-Frequency and Offset Domain Surface Wave Attenuation Method and Its Application[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011, 33(1):30-35.
[3] 李正文, 贺振华. 勘查技术工程学[M]. 北京:地质出版社, 2003. Li Zhengwen, He Zhenhua. Exploration Technology Engineering[M]. Beijing:Geological Publishing House, 2003.
[4] 李彦星. 基阶和高阶瑞雷波频散曲线反演对比分析[J]. 中国煤炭地质, 2010, 22(5):56-58. Li Yanxing. Comparative Analysis of Fundamental and Higher Order Rayleigh Wave Dispersion Curve Inversion[J]. Coal Geology of China, 2010, 22(5):56-58.
[5] 魏继祖, 丁彦礼, 单娜琳,等. 多阶模态瑞利面波频散曲线的BP神经网络反演[J]. 工程地球物理学报, 2012, 9(6):646-653. Wei Jizu. Ding Yanli, Shan Nalin, et al. BP Neural Network Inversion of Multi-Modal Rayleigh Surface Wave Dispersion Curve[J]. Chinese Journal of Engineering Geophysics, 2012, 9(6):646-653.
[6] 李唐律. 浅海地震资料自由表面多次波压制方法研究[D]. 青岛:中国海洋大学, 2014. Li Tanglü. Free Surface Multiple Suppression Method for Shallow Sea Seismic Data[D]. Qingdao:Ocean University of China, 2014.
[7] 李子伟. 瑞利波频散成像方法的实现及成像效果对比研究[J]. 物探化探计算技术, 2015, 37(2):208-214. Li Ziwei. Realization of Rayleigh Wave Dispersion Imaging Method and Comparative Study of Imaging Effect[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(2):208-214.
[8] 刘雪明. 瑞雷波地基检测中震源及"之"字形频散曲线的数值研究[D]. 哈尔滨:哈尔滨工业大学, 2008. Liu Xueming. Numerical Study on Source and Zigzag Dispersion Curve in Rayleigh Wave Foundation Detection[D]. Harbin:Harbin Institute of Technology, 2008.
[9] 符健. 基于改进非线性算法的瑞利波多模式频散曲线反演研究[D]. 西安:长安大学, 2019. Fu Jian. Multi Mode Dispersion Curve Inversion of Rayleigh Wave Based on Improved Nonlinear Algorithm[D]. Xi'an:Chang'an University, 2019.
[10] Löwdin P O. On Linear Algebra, the Least Square Method, and the Search for Linear Relations by Regression Analysis in Quantum Chemistry and Other Sciences[J]. Advances in Quantum Chemistry, 1992, 23:83-126.
[11] 陈杰,熊章强,张大洲,等.基于多模式的多重滤波方法提取瑞雷面波频散曲线[J].工程地球物理学报,2018, 15(4):411-417. Chen Jie, Xiong Zhangqiang, Zhang Dazhou, et al. The Extract Dispersion Curves of Rayleigh Surface Wave Based on Multiple Filtering Method[J]. Chinese Journal of Engineering Geophysics, 2018, 15(4):411-417.
[12] 秦臻, 姚姚, 张才. 频率域速度谱中提取面波的多模频散曲线方法[J]. 人民长江, 2009, 40(11):57-59. Qin Zhen, Yao Yao, Zhang Cai.Multimode Dispersion Curve Method for Surface Wave Extraction from Velocity Spectrum in Frequency Domain[J]. Yangtze River, 2009, 40(11):57-59.
[13] Robinson E A, Treitel S. Geophysical Signal Analysis[M]. New York:Prentice-Hall,1980:152-163.
[14] 陈毅军, 程浩, 巩恩普, 等. 基于Shearlet变换的尺度方向自适应阈值地震数据随机噪声压制方法[J]. 吉林大学学报(地球科学版), 2021, 51(4):1231-1242. Chen Yijun, Cheng Hao, Gong Enpu,et al. Random Noise Suppression of Seismic Data with Scale-Oriented Adaptive Threshold Based on Shearlet Transform[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(4):1231-1242.
[15] 陈文超,陈昕,王伟,等. 基于波形特征稀疏化建模的地震信号表示理论与方法[J]. 石油物探, 2018, 57(1):39-44. Chen Wenchao, Chen Xin, Wang Wei, et al. Seismic Signal Analysis Based on Waveform Diversity Enabled Sparse Representation[J]. Geophysical Prospecting for Petroleum, 2018, 57(1):39-44.
[1] Fan Wenxin, Li Guangming, Liang Shengxian. Electrical Characteristics of Ore-Controlling Structures and Prospecting Prediction of Zhaxikang Mining Area, Tibet [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1709-1719.
[2] Xi Haiyin, Fan Yueye, Wang Guangting, Zhang Yang. Control of Tectonic Evolution on Mineralization of Sandstone Type Uranium Deposits in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1030-1041.
[3] Luo Yongchao, Li Tonglin, Zhang Rongzhe. Local Smooth Inversion of 3D Gravity Gradient [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 543-551.
[4] Wang Tianqi, Li Jing, Bai Lige, Li Jing, Li Feida. GPR Impedance Inversion of Permittivity Based on Velocity Analysis [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 561-570.
[5] Sun Jianguo. Inversion of the Deep Sea Water Velocity by Using Munk Formulaand Seabed Reflection Travel Time [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 1-12.
[6] Jia Zhuo, Liu Sixin, Zhao Xueran, Lu Qi, Li Hongqing, Wang Yuanxin. Complex 3D Model Establishment Under Undulating Surface and Gravity Anomaly Calculation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 277-285.
[7] Sun Liying, Yang Chen, Zhao Haishi, Chang Zhiyong. Remote Sensing Geochemical Inversion Model by Using Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1929-1938.
[8] Wang Tiexing, Wang Deli, Sun Jing, Hu bin, Liu Sixiu. Separation and Primary Estimation of Blended Data by 3D Sparse Inversion [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 895-904.
[9] Chen Shoutian, Wu Yujin, Fu Xichun, Zhang Wenlong, An Zhaohui, Cong Peihong. Fine Portray of Thin Sand-Bodies and Trajectory Design of Horizontal Well in Zhaoyuan Area [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 598-607.
[10] Yang Lingyun, Wu Guochen, Li Qingyang. Efficient Optimization of Second Order Scalar Wave Equation Numerical Simulationfor Non-Splitting PML Boundary [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1755-1767.
[11] Yan Yingwei, Wang Zhejiang, Han Fei, Liu Cong, Zeng Fanjie. Nonlinear Inversion of Multi-Mode Surface Waves [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1768-1779.
[12] Luo Teng, Feng Xuan, Guo Zhiqi, Liu Cai, Liu Xiwu. Seismic Inversion of Anisotropy Parameters of Fractured Reservoirs by Simulated Annealing and Particle Swarm Optimization [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1466-1476.
[13] Zhang Wenqiang, Yin Changchun, Liu Yunhe, Zhang Bo, Ren Xiuyan. Field Continuation for MCSEM Forward Modeling and Identification of Anisotropic Media [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 578-590.
[14] Yang Yue, Weng Aihua, Zhang Yanhui, Li Shiwen, Li Jianping, Tang Yu. Three-Dimensional Inversion Based on the Impedance Information of Controlled Source Electromagnetic Method by Limited Memory Quasi-Newton Method [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 591-602.
[15] Liang Shengxian. A Self-Constrained 3D Inversion and Efficient Solution of Gravity Data Based on Cross-Correlation Coefficient [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1473-1482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .