Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1709-1719.doi: 10.13278/j.cnki.jjuese.20180295

Previous Articles     Next Articles

Electrical Characteristics of Ore-Controlling Structures and Prospecting Prediction of Zhaxikang Mining Area, Tibet

Fan Wenxin1,2, Li Guangming2, Liang Shengxian2   

  1. 1. School of Earth Sciences, Chengdu University of Technology, Chengdu 610081, China;
    2. Chengdu Geological Survey Center, China Geological Survey, Chengdu 610081, China
  • Received:2020-12-08 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the Geological Survey Second Level Project of China Geological Survey (DD2016001529)

Abstract: The Zhaxikang Pb-Zn polymetallic deposit is located in the polymetallic metallogenic belt of the eastern section of the Himalayas. In order to determine the electrical characteristics of the ore-controlling structure of the deposit, the authors set up two geophysical (AMT, MT) survey lines in the deposit area for data collection and obtained a good underground electrical structure profile after detailed data processing and inversion calculations. Combined with long-term field surveys, physical properties and drilling data, 9 faults were interpreted, including 4 ore-bearing faults, 4 concealed faults and 1 deep concealed rock mass, and 2 deep favorable prospecting points were delineated(deep fracture of Ft2 and F24).

Key words: Zhaxikang Pb-Zn polymetallic deposit, geophysics, inversion, electrical structure, fault, prospecting prediction

CLC Number: 

  • P631
[1] 郑有业,赵永鑫,王苹,等. 藏南金锑成矿带成矿规律研究及找矿取得重大进展[J]. 地球科学:中国地质大学学报, 2004, 29(1):44. Zheng Youye, Zhao Yongxin, Wang Ping, et al. Research on the Metallogenic Regularity of the Gold Antimony Metallogenic Belt in Southern Tibet and Major Progress in Prospecting[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(1):44.
[2] 戚学祥, 李天福, 孟祥金,等. 藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J]. 岩石学报, 2008, 24(7):1638-1648. Qi Xuexiang, Li Tianfu, Meng Xiangjin, et al.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet and Its Constraint on Antimony-Gold Polymetallic Minerogenesis[J]. Acta Petrologica Sinica, 2008, 24(7):1638-1648.
[3] 郑有业, 张立雪, 孙祥. 北喜马拉雅金锑多金属成矿带成矿作用、矿床类型与控矿因素[J]. 矿床地质, 2012,31(增刊1):1081-1082. Zheng Youye, Zhang Lixue, Sun Xiang. Metallogenesis, Deposit Types and Ore-Controlling Factors in the North Himalaya Gold-Antimony Polymetallic Metallogenic belt[J]. Mineral Deposits, 2012,31(Sup. 1):1081-1082.
[4] 焦彦杰, 梁生贤, 郭镜. 西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究[J]. 地球物理学进展, 2017, 32(2):634-639. Jiao Yanjie, Liang Shengxian, Guo Jing. Research on the Prediction of Tibet Sangrize Black Rock Series Positioning Structure Hydrothermal Type Pb-Zn Ore[J]. Progress in Geophysics, 2017, 32(2):634-639.
[5] 李关清, 顾雪祥, 程文斌,等. 藏南扎西康锑硫盐多金属矿床成矿物质来源分析:兼论北喜马拉雅成矿带主要矿床矿质来源的差异性[J]. 地学前缘, 2014, 21(5):90-104. Li Guanqing, Gu Xuexiang, Cheng Wenbin, et al. The Analysis of Metallogenic Material Sources of the Zhaxikang Antimony (Sulfur Salts) Polymetallic Deposits in Southern Tibet:Concurrent Discussion on The Differences of the Ore Sources of Major Mineral Deposits in North Himalayan Metallogenic Belt[J]. Earth Science Frontiers, 2014, 21(5):90-104.
[6] 张建芳, 郑有业, 张刚阳,等. 北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J]. 地球科学:中国地质大学学报, 2010, 35(6):1000-1010. Zhang Jianfang, Zheng Youye,Zhang Gangyang, et al. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry[J]. Earth Science:Journal of China University of Geosciences, 2010, 35(6):1000-1010.
[7] 梁维, 郑远川, 杨竹森,等. 藏南扎西康铅锌银锑多金属矿多期多阶段成矿特征及其指示意义[J]. 岩石矿物学杂志, 2014, 33(1):64-78. Liang Wei, Zheng Yuanchuan, Yang Zhusen, et al.Multiphase and Polystage Metallogenic Process of the Zhaxikang Large-Size Pb-Zn-Ag-Sb Polymetallic Deposit in Southern Tibet and Its Implications[J]. Journal of Rock and Mineralogy, 2014, 33(1):64-78.
[8] 卿成实,丁俊, 周清,等. 西藏扎西康铅锌多金属矿床原生晕特征[J]. 岩石矿物学杂志, 2014, 33(6):1113-1126. Qing Chengshi, Ding Jun, Zhou Qing, et al. Primary Halo Characteristics of the Zhaxikang Pb-Zn Polymetallic Deposit, Tibet[J]. Journal of Rock and Mineralogy, 2014, 33(6):1113-1126.
[9] 王艺云, 唐菊兴, 郑文宝,等. 西藏隆子县扎西康锌多金属矿床矿石组构研究及成因探讨[J]. 地球学报, 2012, 33(4):681-692. Wang Yiyun, Tang Juxing, Zheng Wenbao, et al.A Tentative Discussion on Ore Fabric and Genesis of the Zhaxikang Zn-Polymetallic Deposit, Lhunze County, Tibet[J]. Acta Geosciences, 2012, 33(4):681-692.
[10] 林彬,郑文宝,徐云峰,等.典型矿物化学特征对藏南扎西康矿床成因的启示[J]. 矿物学报, 2013,33(增刊2):794-795. Lin Bin, Zheng Wenbao, Xu Yunfeng, et al.Enlightenment of Typical Mineral Chemistry Characteristics on the Genesis of the Zhaxikang Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2013,33(Sup.2):794-795.
[11] 易继宁. 藏南扎西康式铅锌成矿作用与多元地学信息找矿预测研究[D].北京:中国地质大学(北京), 2017. Yi Jining. Zhaxikang-Type Pb-Zn Metallogenesis in Southern Tibet and Prospecting Prediction Based on Multiple Geological Information[D]. Beijing:China University of Geosciences (Beijing), 2017.
[12] 李应栩, 李光明, 董随亮,等. 西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J]. 矿物岩石地球化学通报, 2015, 34(3):571-582. Li Yingxu, Li Guangming, Dong Suiliang, et al. Preliminary Study on Fluid Evolution in the Ore Forming Process of the Zhaxikang Polymetallic Deposit,Tibet,China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3):571-582.
[13] 程文斌, 李关清, 顾雪祥,等. 藏南扎西康铅锌锑银多金属矿床成矿物质来源的元素地球化学与S、Pb同位素研究[J]. 矿物学报, 2013,33(增刊1):302-303. Cheng Wenbin, Li Guanqing, Gu Xuexiang, et al.Forming Minerals Source of Elemental Geochemistry and S, Pb Isotopes of the Zhaxikang Pb-Zn-Sb-Ag Polymetallic Deposit in Southern Tibet[J]. Acta Mineralogica Sinica, 2013,33(Sup. 1):302-303.
[14] 郑文宝, 唐菊兴, 邢树文,等. 北喜马拉雅成矿带地质背景与主攻矿床类型思考[J]. 矿物学报, 2013,33(增刊1):374-375. Zheng Wenbao, Tang Juxing, Xing Shuwen, et al. Geological Background of the Northern Himalayan Metallogenic Belt and Considerations on the Main Deposit Types[J]. Acta Mineralogica Sinica, 2013,33(Sup. 1):374-375.
[15] 董汉文, 许志琴, 孟元库,等. 藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定[J]. 岩石学报, 2017, 33(12):3741-3752. Dong Hanwen, Xu Zhiqin, Meng Yuanku, et al.Geochronology of Leucogranites in the Cuonadong Dome, Southern Tibet and Limitation of the Timing of the Southern Tibet Detachment System (STDS)[J]. Acta Petrologica Sinica, 2017, 33(12):3741-3752.
[16] 李光明, 张林奎, 焦彦杰,等. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J]. 矿床地质, 2017, 36(4):1003-1008. Li Guangming, Zhang Linkui, Jiao Yanjie, et al. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet[J]. Mineral Deposits, 2017, 36(4):1003-1008.
[17] 张志, 张林奎, 李光明,等. 北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题[J]. 地球学报, 2017, 38(5):754-766. Zhang Zhi,Zhang Linkui,Li Guangming, et al. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes[J]. Acta Geosciences, 2017, 38(5):754-766.
[18] 梁维, 杨竹森, 郑远川. 藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J]. 地质学报, 2015, 89(3):560-568. Liang Wei, Yang Zhusen, Zheng Yuanchuan. The Zhaxikang Pb-Zn P Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance[J]. Acta Geology, 2015, 89(3):560-568.
[19] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255:1663-1670.
[20] 尹安. 喜马拉雅-青藏高原造山带地质演化:显生宙亚洲大陆生长[J]. 地球学报, 2001, 22(3):193-230. Yin An. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia[J]. Acta Geosciences, 2001, 22(3):193-230.
[21] 孟祥金, 杨竹森, 戚学祥,等. 藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J]. 岩石学报, 2008, 24(7):1649-1655. Meng Xiangjin, Yang Zhusen, Qi Xuexiang, et al. Silicon-Oxygen-Hydrogen Isotopic Compositions of Zaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure[J]. Acta Petrologica Sinica, 2008, 24(7):1649-1655.
[22] 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 2007, 26(6):639-649. Zhang Jinjiang. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet[J]. Geological Bulletin, 2007, 26(6):639-649.
[23] 郭磊, 张进江, 张波. 北喜马拉雅然巴穹窿的构造、运动学特征、年代学及演化[J]. 自然科学进展, 2008, 18(6):640-650. Guo Lei, Zhang Jinjiang, Zhang Bo. The Structure, Kinematics, Chronology and Evolution of the Ranba Dome in the Northern Himalayas[J]. Progress in Natural Science, 2008, 18(6):640-650.
[24] 董随亮, 黄勇, 李光明,等. 藏南姐纳各普金矿地质特征及成矿时代约束:对扎西康矿集区铅锌金锑成矿系统的启示[J]. 资源与产业, 2017(5):56-64. Dong Suiliang, Huang Yong, Li Guangming, et al. Geology and Mineralization Dating of Jienagepu Gold Deposit in Southern Tibet with Implications from Zhaxikang Pb-Zn-Au-Sb Metallogenic System[J]. Resources & Industry, 2017(5):56-64.
[25] Hauck M L, Nelson K D, Brown L D, et al. Crustal Structure of the Himalayan Orogen at 90° East Longitude from Project Indepth Deep Reflection Profiles[J]. Tectonics, 1998, 17(4):481-500.
[26] 付建刚,李光明,王跟厚,等.北喜马拉雅双穹窿的建立:来自藏南错那洞穹窿的厘定[J].中国地质,2018,45(4):783-802. Fu Jiangang, Li Guangming, Wang Genhou, et al. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet[J].Geology in China, 2018,45(4):783-802.
[27] 林彬,唐菊兴,郑文宝,等.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因[J]. 岩石矿物学杂志, 2016, 35(3):391-406. Lin Bin, Tang Juxing, Zheng Wenbao, et al.Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet[J]. Journal of Rock and Mineralogy, 2016, 35(3):391-406.
[28] 焦彦杰, 梁生贤, 郭镜,等. 西藏扎西康铅锌矿集区的物探方法组合试验[J]. 物探与化探, 2015, 39(2):245-252. Jiao Yanjie, Liang Shengxian, Guo Jing, et al. Comparative Research on the Combinational Test of Geophysical Methods in the Zhaxikang Lead-Zinc Ore Concentration Area, Tibet[J]. Geophysical and Geochemical Exploration, 2015, 39(2):245-252.
[29] 吴建阳, 李光明, 周清,等. 藏南扎西康整装勘查区成矿体系初探[J]. 中国地质, 2015, 42(6):1674-1683. Wu Jianyang, Li Guangming, Zhou Qing, et al. A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet[J]. Geology in China, 2015, 42(6):1674-1683.
[30] 吴昊, 李光明, 张林奎,等. 扎西康矿区独立金矿体金的赋存状态研究[J]. 矿物岩石, 2017,37(4):6-13. Wu Hao, Li Guangming, Zhang Linkui, et al. Study of Gold Occurrencein in the Zhaxikang Independent Gold Orebody[J]. Mineralogy and Petrology, 2017,37(4):6-13.
[31] Li G Q, Cheng W B, Zhang Y M, et al.Geochemical Characteristics and Their Geologic Significance of the Lower Jurassic Ridang Formation Host Strata from the Zhaxikang Sb-Pb-Zn-Ag Polymetallic Ore-Concentrated District, South Tibet[J]. Bulletin of Mineralogy Petrology & Geochemistry, 2014, 33(5):598-608.
[32] 樊文鑫, 李光明, 焦彦杰,等. 重磁场特征对西藏扎西康矿集区构造格架与成矿的启示[J]. 吉林大学学报(地球科学版), 2019, 49(6):1741-1754. Fan Wenxin,Li Guangming,Jiao Yanjie, et al. Enlightenment of the Characteristics of Gravity and Magnetic Field on the Tectonic Framework and Metallogenesis of the Zhaxikang Ore-Concentrating Area, Tibe[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1741-1754.
[33] 李堃, 刘飞, 刘凯, 等. 湘西-黔东地区铅锌矿床找矿模型与定量预测[J].吉林大学学报(地球科学版), 2020, 50(3):825-841. doi:10.13278/j.cnki.jjuese.20180216. Li Kun, Liu Fei, Liu Kai, et al. Prospecting Model and Quantitative Prediction of Pb-Zn Deposits in Western Hunan and Eastern Guizhou[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3):825-841. doi:10.13278/j.cnki.jjuese.20180216.
[34] 付建刚,李光明,王根厚,等.西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J].吉林大学学报(地球科学版),2020,50(5):1304-1322. doi:10.13278/j.cnki.jjuese.20190285. Fu Jiangang, Li Guangming,Wang Genhou,et al. Syntectonic Skarn Characteristics and Mineralization Age of Associated Be-W-Sn Rare Metal Deposit in Cuonadong Dome, Southern Tibet, China[J].Journal of Jilin University(Earth Science Edition),2050,50(5):1304-1322. doi:10.13278/j.cnki.jjuese.20190285.
[35] 战启宁,李鹏,鹿琪,等.东北地区松辽盆地和大三江盆地群基底构造电性特征[J].世界地质,2021,40(3):703-710. Zhan Qining,Li Peng,Lu Qi,et al.Electrical Characteristics of Basement Structures of Songliao Basin and Dasanjiang Basin Group in Northeast China[J]. Global Geology,2021,40(3):703-710.
[36] 李洪梁,李光明,丁俊,等.藏南扎西康铅锌多金属矿床成因:硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5):1289-1303. Li Hongliang,Li Guangming,Ding Jun,et al. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet:Evidence from in Situ S Isotopes of Sulfides[J]. Journal of Jilin University (Earth Science Edition),2020, 50(5):1289-1303.
[1] Fu Guang, Wang Hongwei, Han Guomeng, Pu Xiugang. Prediction Method and Application of Oil and Gas Accumulation Favorable Position Near Fault in Slope Area Outside Source [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1700-1708.
[2] Zhang Qidao, Liu Zhennan, Yin Linhu. Chemical Characteristics and Genesis of Geothermal Fluid in Deep Metamorphic Rock Area: A Case of Hot Springs in Longchuan Basin, Western Yunnan [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1838-1852.
[3] Zhang Zhili, Han Fuxing, Sun Wenyan, Wang Yi, Yang Anqi, Jiao Yanyan, Xue Shigui. Surface Wave Attenuation Method Using Forward Modeling [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1890-1896.
[4] Lin Bo, Yun Lu, Zhang Xu, Xiao Chongyang, Kuang Anpeng, Xu Xuechun, Cao Zicheng. A Method for Plane Segmentation of Small-Scale Intraplate Strike-Slip Faults: A Case of the Middle-North Segment of Shunbei No. 5 Fault in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1006-1018.
[5] Guo Ying, Yang Bo, Han Zijun, Li Guoying, Wu Qingxun, Ye Tao. Genesis Mechanism of Authigenic Minerals in Deep Clastic Rocks and Its Influence on Reservoir Physical Property: An Example from the Jurassic in Qinan Fault Step Belt, Bohai Sea, China [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 973-990.
[6] Xi Haiyin, Fan Yueye, Wang Guangting, Zhang Yang. Control of Tectonic Evolution on Mineralization of Sandstone Type Uranium Deposits in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1030-1041.
[7] Liao Wenhao, Chen Dongxia, Zeng Jianhui, Jiang Wenya, Liu Ziyi, Zhu Chuanzhen, Wang Yifan. Configuration Types of Fault-Sand in Chengbei Fault Terrace Zone of Qikou Sag and Its Control on Hydrocarbon Accumulation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 336-354.
[8] Liu Junqiao, Lü Yanfang, Fu Guang, Hu Xinlei, Shi Jijian, Sun Tongwen. Recognition Method and Application of Fault Trap Position and Formation Period in Slope Area: A Case Study in Wen'an Slope, Jizhong Depression [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 355-366.
[9] Luo Yongchao, Li Tonglin, Zhang Rongzhe. Local Smooth Inversion of 3D Gravity Gradient [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 543-551.
[10] Wang Tianqi, Li Jing, Bai Lige, Li Jing, Li Feida. GPR Impedance Inversion of Permittivity Based on Velocity Analysis [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 561-570.
[11] Wang Kongwei, Lu Yongqiang, Nie Jin, Teng Mingming, Wang Xiaoliang. Earthquake Variation Law of Xiannüshan and Jiuwanxi Fault Zones in Three Gorges Reservoir Area [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 624-637.
[12] Sun Jianguo. Inversion of the Deep Sea Water Velocity by Using Munk Formulaand Seabed Reflection Travel Time [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 1-12.
[13] Liu Pei, Zhang Xiangtao, Lin Heming, Du Jiayuan, Feng Jin, Chen Weitao, Liang Jie, Jia Peimeng. Distribution Mechanism of Oil and Gas in Xijiang Main Depression of Pearl River Mouth Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 52-64.
[14] Zhang Danfeng, Fang Shi, Qiu Shankun. Current Research States and Development Directions of Fault Sealing Properties [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 65-80.
[15] Cao Fengjuan, Jia Lihua, Li Mengying, Wang Songyang. Activity and Seismic Risk Assessment of Main Faults in Liaoning Area [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 286-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .