Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (3): 927-939.doi: 10.13278/j.cnki.jjuese.20200277

Previous Articles     Next Articles

Petrophysical Model for Complex Pore Structure and Its Applications in Tight Sand Gas Reservoirs

Zhang Yiming1, Qin Xiaoying2, Guo Zhiqi2, Niu Cong1, Wang Di1, Ling Yun1   

  1. 1. CNOOC Research Institude Co, Ltd., Beijing 100028, China;
    2. College of GeoExploration Science and Techonology, Jilin University, Changchun 130026, China
  • Received:2020-11-26 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the China National Offshore Oil Corporation Research Project (YXKY-2019-ZY-04) and the National Natural Science Foundation of China (42074153)

Abstract: We conducted rock physical modeling to investigate the effect of complex pore space on elastic properties of tight gas sands. Two ways for the characterization of pore spaces were compared in the rock physical model. The modeling results show that the complex velocity-porosity relationships from well log data can be interpreted by both the two models. The rock physical inversion using well log data shows that compared to the single pore aspect ratio model, the dual-porosity model gives better prediction in shear wave velocity. It reveals that the dual-porosity model may be a more realistic representation of tight sands, and the obtained parameter of the proportion of soft pores can reflect heterogeneity of pore spaces. The proposed rock physical model is used to evaluate elastic modulus of the tight sand dry frame using logging data. Compared with the conventional empirical formulas such as Krief or Pride, this method considers mineralogy, porosity and complex microstructural pore structures,so it is more rigorous to determine the elastic properties of dry frame. The analysis on the obtained results indicates that a small amount of micro-cracks may play an important role in determining elastic behaviors of dry frame of tight sands, and round pores provide the main storage space for gas. The obtained dry frame modulus can be used to calculate many rock physical parameters for formation evaluation such as the Biot coefficient, and provide key parameters for the Gassmann fluids substitution theory and BISQ theory.

Key words: tight gas sandstone, rock physics, pore structure, aspect ratio, fraction of soft pore, dry frame

CLC Number: 

  • P631
[1] 惠学智,许有为,吕娜娜,等.鄂尔多斯盆地华庆地区长8段成岩主控因素及其对储层的影响[J].世界地质,2019,38(4):1012-1020.doi:10.3969/j.issn.1004-5589.2019.04.012. Hui Xuezhi,Xu Youwei,Lyu Nana,et al.Major Controlling Factors of Diagenesis and Their Influences on Chang-8 Section Reservoir,Huaqing Area,Ordos Basin[J].Global Geology,2019,38(4):1012-1020.doi:10.3969/j.issn.1004-5589.2019.04.012.
[2] 刘喜杰,马遵敬,韩冬,等.鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4):481-490.doi:10.11764/j.issn.1672-1926.2018.02.002. Liu Xijie, Ma Zunjing, Han Dong, et al. Research on the Main Factors of High Quality Tight Sand Stone Reservoir in Linxing Block, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29 (4): 481-490.doi:10.11764/j.issn.1672-1926.2018.02.002.
[3] Tutuncu A N, Podio A L, Sharma M M. An Experimental Investigation of Factors Influencing Compressional-and Shear-Wave Velocities and Attenuations in Tight Gas Sandstones[J]. Geophysics, 1994, 59(1):77-86.doi:10.1190/1.1443536.
[4] Smith T M, Sayers C M, Sondergeld C H. Rock Properties in Low-Porosity/Low-Permeability Sandstones[J]. Leading Edge, 2009, 28(1):48-59.doi:10.1190/1.3064146.
[5] Ruiz F, Cheng A. A Rock Physics Model for Tight Gas Sand[J]. Leading Edge, 2010, 29(12):1484-1489.doi:10.1190/1.3525364.
[6] Yin H, Zhao J, Tang G, et al. Pressure and Fluid Effect on Frequency-Dependent Elastic Moduli in Fully Saturated Tight Sandstone[J]. Journal of Geophysical Research: Solid Earth,2017,122(11):8925-8942.doi:10.1002/2017JB014244.
[7] 周枫,徐鸣洁,马中高.等效孔隙结构模型在鄂尔多斯致密含气砂岩中的应用[J].高校地质学报,2013,19(4):588-593.doi:10.3969/j.issn.1006-7493.2013.04.004. Zhou Feng, Xu Mingjie, Ma Zhonggao,et al. Application of Effective Porosity Model to Tight Gas Sands in Ordos Basin[J]. Geological of China Universities, 2013,19 (4): 588-593.doi:10.3969/j.issn.1006-7493.2013.04.004.
[8] 印兴耀,刘欣欣,曹丹平.基于Biot相洽理论的致密砂岩弹性参数计算方法[J].石油物探,2013,52(5):445-451.doi:10.3969/j.issn.1000-1441.2013.05.001. Yin Xingyao,Liu Xinxin,Cao Danping.Elastic Parameters Calculation for Tight Sand Reservoir Based on Biot-Consistent Theory[J].Geological Prospecting for Petroleum,2013,52(5):445-451.doi:10.3969/j.issn.1000-1441.2013.05.001.
[9] 杨志芳,曹宏,姚逢昌,等.复杂孔隙结构储层地震岩石物理分析及应用[J].中国石油勘探,2014,19(3):50-56.doi:10.3969/j.issn.1672-7703.2014.03.006. Yang Zhifang, Cao Hong, Yao Fengchang,et al. Seismic Rock Physical Analysis of Complex Porous Reservoir and Its Application[J]. China Petroleum Exploration, 2014,19(3): 50-56.doi:10.3969/j.issn.1672-7703.2014.03.006.
[10] 赖锦, 王贵文, 罗官幸, 等. 基于岩石物理相约束的致密砂岩气储层渗透率解释建模[J]. 地球物理学进展, 2014, 29(3):1173-1182.doi:10.6038/pg20140323. Lai Jin,Wang Guiwen,Luo Guanxing, et al. A Fine Logging Interpretation Model of Permeability Confined by Petrophysical Facies of Tight Gas Sandstone Reservoirs[J].Progress in Geophysics,2014,29(3):1173-1182.doi:10.6038/pg20140323.
[11] 邓继新, 周浩, 王欢,等. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析[J]. 地球物理学报, 2015,58(9):3389-3400. Deng Jixin, Zhou Hao, Wang Huan, et al. The Influence of Pore Structure in Reservoir Sandstone on Dispersion Properties of Elastic Waves[J].Chinese Journal of Geophysics,2015,58(9): 3389-3400.
[12] 王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238. Wang Pu,Wu Guochen. The Rock Physics Modeling for Tight Reservoir Based on the Self-Consistent Approximation[J]. Progress in Geophysics,2015,30(5):2233-2238.
[13] 姜仁, 曾庆才, 黄家强, 等. 基于岩石物理分析的致密砂岩流体检测方法研究[J]. 科学技术与工程, 2015, 15(1):163-167.doi:10.3969/j.issn.1671-1815.2015.01.030. Jiang Ren, Zeng Qingcai, Huang Jiaqiang, et al. Tight Gas Saturation Detection by Most Sensitive AVO Attributes with Rock Physics Analysis[J]. Science Technology and Engineering, 2015, 15 (1): 163-167.doi:10.3969/j.issn.1671-1815.2015.01.030.
[14] 刘倩,印兴耀,李超.含不连通孔隙的致密砂岩储层岩石弹性模量预测方法[J].石油物探,2015,54(6):635-642.doi:10.3969/j.issn.1000-1441.2015.06.001. Liu Qian, Yin Xingyao, Li Chao. Rock Elastic Modulus Estimation for Tight Sandstone Reservoirs with Disconnected Pores[J]. Geophysical Prospecting for Petroleum, 2015,54 (6):635-642.doi:10.3969/j.issn.1000-1441.2015.06.001.
[15] 印兴耀,刘倩.致密储层各向异性地震岩石物理建模及应用[J].中国石油大学学报(自然科学版),2016,40(2):52-58. Yin Xingyao, Liu Qian. Anisotropic Rock Physical Modeling of Tight Sandstone and Applications[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016,40 (2): 52-58.
[16] 王大兴. 致密砂岩气储层的岩石物理模型研究[J]. 地球物理学报, 2016,59(12):4603-4622. Wang Daxing. Study on Rock Physics Model of Gas Reservoirs in Tight Sandstone[J]. Chinese Journal of Geophysics,2016,59 (12): 4603-4622.
[17] 贾凌云, 李琳, 王千遥,等.致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018,33(4):416-424.doi:10.11867/j.issn.1001-8166.2018.04.0416. Jia Lingyun, Li Lin, Wang Qianyao, et al. Optimization of the Rock Physical Model in Tight Sandstone Reservoir[J]. Advances in Earth Science, 2018,33(4):416-424.doi:10.11867/j.issn.1001-8166.2018.04.0416.
[18] 郭梦秋, 巴晶, 马汝鹏, 等. 含流体致密砂岩的纵波频散及衰减:基于双重双重孔隙结构模型描述的特征分析[J]. 地球物理学报, 2018, 61(3):1053-1068.doi:10.6038/cjg2018L0678. Guo Mengqiu,Ba Jing,Ma Rupeng, et al.P-Wave Velocity Dispersion and Attenuation in Fluid-Saturated Tight Sandstones: Characteristics Analysis Based on a Double Double-Porosity Structure Model Description[J]. Chinese Journal of Geophysics, 2018, 61(3):1053-1068.doi:10.6038/cjg2018L0678.
[19] 何润发,巴晶,陈天胜, 等.致密砂岩气藏裂隙-孔隙型弹性岩石物理模板研究:以川西坳陷A区为例[J].地球物理学进展,2020,35(1):116-123. He Runfa, Ba Jing, Chen Tiansheng, et al. A Study on Fracture-Pore Elastic Rock Physics Template of Tight Sandstone Gas Reservoirs: A Case Study of Area A in West Sichuan Depression[J]. Progress in Geophysics, 2020,35 (1): 116-123.
[20] 逄硕,刘财,郭智奇,等.基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J].吉林大学学报(地球科学版),2017,47 (2):606-615.doi:10.13278/j.cnki.jjuese.201702304. Pang Shuo,Liu Cai,Guo Zhiqi,et al. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale[J].Journal of Jilin University (Earth Science Edition),2017,47(2):606-615.doi:10.13278/j.cnki.jjuese. 201702304.
[21] 张冰,郭智奇,徐聪,等.基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J].吉林大学学报(地球科学版),2018, 48(4):1244-1252.doi:10.13278/j.cnki.jjuese.20170285. Zhang Bing,Guo Zhiqi,Xu Cong,et al.Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model[J]. Journal of Jilin University (Earth Science Edition),2018,48(4):1244-1252.doi:10.13278/j.cnki.jjuese. 20170285.
[22] 李博南,曲寿利,沈珲.基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J].吉林大学学报(地球科学版),2020,50 (1):285-293.doi:10.13278/j.cnki.jjuese.20190001. Li Bonan,Qu Shouli,Shen Hui.Microscopic Characterization Method of Carbonate Reservoirs Based on Rock Physics Model[J].Journal of Jilin University (Earth Science Edition), 2020, 50(1):285-293. doi:10.13278/j.cnki.jjuese.20190001.
[23] Berryman J G. Mixture Theories for Rock Properties[M].Washington, DC: American Geophysical Union,1995:205-228.doi:10.1029/RF003p0205.
[24] Wood A B, Lindsay R B. A Textbook of Sound[J]. Physics Today, 1956, 9(11):37.doi:10.1063/1.3059819.
[25] Gassmann F.Uber die Elastizitat Poroser Medien[J]. Vier Der Natur Gesellschaft in Zurich, 1951, 96:1-23.
[26] Biot,Maurice A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. II. Higher Frequency Range[J]. The Journal of the Acoustical Society of America, 1955, 28(182):168-191.
[27] Dvorkin J,Nur A. Dynamic Poroelasticity: A Unified Model with the Squirt and the Biot Mechanisms[J]. Geophysics, 1993, 58(4):524-533.doi:10.1190/1.1443435.
[28] Dvorkin J,Nolen-Hoeksema R, Nur A. The Squirt-Flow Mechanism: Macroscopic Description[J]. Geophysics, 1994, 59(3):428-438.doi:10.1190/1.1443605.
[29] Yan X F,Yao F C,Cao H, et al.Analyzing the Mid-Low Porosity Sandstone Dry Frame in Central Sichuan Based on Effective Medium Theory[J].Applied Geophysics,2011,18(3):163-170.doi:10.1007/s11770-011-0293-1.
[30] Krief M, Garat J, Stellingwerff J, et al. A Petrophysical Interpretation Using the Velocities of P and S Waves (Full-Waveform Sonic)[J]. Log Analyst, 1990, 31:355-369.
[31] Pride S R,Berryman J G,Harris J M.Seismic Attenuation Due to Wave-Induced Flow[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1).doi:10.1029/2003JB002639.
[32] Lee M W. A Simple Method of Predicting S-Wave Velocity[J]. Geophysics, 2006, 71(6):F161-F164.doi:10.1190/1.2357833.
[33] Biot M A.General Theory of Three-Dimensional Consolidation[J]. Journal of Applied Physics,1941,12(2):155-164.doi:10.1063/1.1712886.
[34] Han D H,Batzle M. Gain Function and Hydrocarbon Indicators[J]. SEG Technical Program Expanded Abstracts,2003, 22(1):1695.doi:10.1190/1.1817633.
[1] Huang Xin, Duan Dongping, Liu Binbin, Li Bingying, Ding Fang, Wang Wei, Lou Min. Origin Mechanism of Chlorite and Its Impact on Reservoir Properties in Huagang Formation, Xihu Depression [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 669-679.
[2] Wu Meng, Qin Yong, Wang Xiaoqing, Li Guozhang, Zhu Chao, Zhu Shifei. Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 35-51.
[3] Wei Bo, Zhao Jianbin, Wei Yanwei, Li Zhenlin, Xiong Kui. Reservoir Classification Method in Second Member of Liushagang Formation in Bailian Area, Fushan Sag [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1639-1647.
[4] Yang Kun, Wang Fuyong, Zeng Fanchao, Zhao Jiuyu, Wang Congle. Permeability Prediction Based on Fractal Characteristics of Digital Rock [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1003-1011.
[5] Li Bonan, Qu Shouli, Shen Hui. Microscopic Characterization Method of Carbonate Reservoirs Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 285-293.
[6] Wang Lu, Yang Shenglai, Peng Xian, Liu Yicheng, Xu Wei, Deng Hui. Pore Structure Characteristics and Storage-Seepage Capability of Multi-Type Reservoirs in Fracture-Cavity Carbonate Gas Reservoirs: A Case Study of Deng-4 Member in Gaoshiti-Moxi Area, Sichuan Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 947-958.
[7] Shan Xiang, Guo Huajun, Guo Xuguang, Zou Zhiwen, Li Yazhe, Wang Libao. Influencing Factors and Quantitative Assessment of Pore Structure in Low Permeability Reservoir: A Case Study of 2nd Member of Permian Upper Urho Formation in Jinlong 2 Area, Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 637-649.
[8] Zhao Qianping, Zhang Lixia, Yin Jintao, Yu Yuxi, Jiang Chengfu, Wang Hui, Gao Chao. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers: An Example from Zhangjiatan Lacustrine Shale [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1018-1029.
[9] Lin Miruo, Cao Yingchang, Xi Kelai, Wang Jian, Chen Hong, Wu Junjun. Characteristics and Controlling Factors of Permian Reservoirs in Eastern Slope of Fukang Sag [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 991-1007.
[10] Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692.
[11] Lin Chengyan, Wang Yang, Yang Shan, Ren Lihua, You Chunmei, Wu Songtao, Wu Yuqi, Zhang Yimin. 3D Modeling of Digital Core Based on X-ray Computed Tomography [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 307-317.
[12] Pang Shuo, Liu Cai, Guo Zhiqi, Liu Xiwu, Huo Zhizhou, Liu Yuwei. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 606-615.
[13] Li Yilin, Zhang Yunfeng, Cong Lin, Xie Zhou, Yan Ming, Tian Xiaoxiong. Application of X-CT Scanning Technique in the Characterization of Micro Pore Structure of Tight Sandstone Reservoir: an Example from Fuyu Oil Layer in Daan Oilfield [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 379-387.
[14] Zheng Xiangwei, Wu Jian, He Shenglin, Hu Xiangyang, Liang Yunan. Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 286-294.
[15] Zhang Guangzhi, Chen Jiaojiao, Chen Huaizhen, Zhang Jinqiang, Yin Xingyao. Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 630-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .