Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (3): 940-950.doi: 10.13278/j.cnki.jjuese.20200081

Previous Articles     Next Articles

Lithology Identification Method Based on Gradient Boosting Algorithm

Wang Heng1, Jiang Yanan1, Zhang Xin1, Zhong Hongru2, Chen Qingxuan3, Gao Shichen1   

  1. 1. School of Mathematics and Physics, China University of Geosciences, Beijing 100083, China;
    2. School of Information Engineering, China University of Geosciences, Beijing 100083, China;
    3. Fifth Gas Production Plant of PetroChina Changqing Oilfield Company, Xi'an 750006, China
  • Received:2020-04-09 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Science and Technology Major Project (2016ZX05050)

Abstract: Traditional lithology identification methods, such as cuttings logging, drilling coring, and logging data interpretation techniques, are highly dependent on logging quality, have low identification accuracy and efficiency, and have poor generalization capabilities. With the rapid development of computer technology, combining logging data with computer technology to carry out lithology research has become an effective means of lithology identification. This paper proposes a lithology recognition method based on gradient boosting algorithms XGBoost and LightGBM. Taking the lower carbonate reservoir in Block 41-33 of Sudong gas field in Sulige gas field as an example, test and verify it, using the acoustic time difference, natural gamma, photoelectric absorption cross-section index, density, and deep lateral resistivity in the logging data. Lithology identification is carried out with six parameterssuch as compensation neutron, and compared with traditional algorithms such as KNN, naive Bayes and support vector machine. The results show that the accuracy of lithology identification of the three traditional algorithms is 78.45%,74.43% and 78.72%, the recognition accuracy rates of XGBoost and LightGBM based on gradient boosting algorithms reached 98.90% and 98.72% respectively, which are much higher than traditional algorithms.

Key words: lithology identification, gradient boosting algorithm, carbonate rock, decision tree

CLC Number: 

  • TP181
[1] 马峥,张春雷,高世臣. 主成分分析与模糊识别在岩性识别中的应用[J]. 岩性油气藏,2017, 29(5): 127-133. Ma Zheng, Zhang Chunlei, Gao Shichen. Lithology Identification Based on Principal Component Analysis and Fuzzy Recognition[J]. Lithologic Reservoirs, 2017, 29(5): 127-133.
[2] 叶涛,韦阿娟,黄志,等. 基于主成分分析法与Bayes判别法组合应用的火山岩岩性定量识别:以渤海海域中生界为例[J]. 吉林大学学报(地球科学版),2019, 49(3): 873-880. Ye Tao, Wei Ajuan, Huang Zhi, et al. Quantitative Identification of Volcanic Lithology Based on Comprehensive Principal Component Analysis and Bayes Discriminant Method:A Case Study of Mesozoic in Bohai Bay[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 873-880.
[3] 韩启迪,张小桐,申维. 基于梯度提升决策树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报,2018, 37(6): 1173-1180. Han Qidi, Zhang Xiaotong, Shen Wei. Lithology Identification Technology Based on Gradient Boosting Decision Tree (GBDT) Algorithm[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2018, 37(6): 1173-1180.
[4] 叶倩怡,饶泓,姬名书. 基于Xgboost的商业销售预测[J]. 南昌大学学报(理科版),2017, 41(3): 275-281. Ye Qianyi, Rao Hong, Ji Mingshu. Sales Prediction of Stores Based on Xgboost Algorithm[J]. Journal of Nanchang University (Natural Science), 2017, 41(3): 275-281.
[5] 曹莹,苗启广,刘家辰,等. AdaBoost算法研究进展与展望[J]. 自动化学报,2013, 39(6): 745-758. Cao Ying, Miao Qiguang, Liu Jiachen, et al. Advance and Prospects of Ada Boost Algorithm[J]. Acta Automatica Sinica, 2013, 39(6): 745-758.
[6] Friedman J H. Greedy Function Approximation: Gradient Boosting Machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232.
[7] 王华勇,杨超,唐华. 基于LightGBM改进的GBDT短期负荷预测研究[J]. 自动化仪表,2018, 39(9): 76-78, 82. Wang Huayong, Yang Chao, Tang Hua. Research on the Short-Term Load Forecasting Using Improved GBDT Based on LightGBM[J]. Process Automation Instrumentation, 2018, 39(9): 76-78, 82.
[8] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
[9] Ke G, Meng Q, Finley T, et al. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree[C]//31st Conference on Neural Information Processing Systems(NIPS 2017). Long Beach: Advances in Neural Information Processing Systems,2017: 3146-3154.
[10] 马晓君,沙靖岚,牛雪琪. 基于LightGBM算法的P2P项目信用评级模型的设计及应用[J]. 数量经济技术经济研究,2018, 35(5): 144-60. Ma Xiaojun, Sha Jinglan, Niu Xueqi. An Empirical Study on the Credit Rating of P2P Projects Based on LightGBM Algorithm[J]. The Journal of Quantitative & Technical Economics, 2018, 35(5): 144-60.
[11] 袁照威,段正军,张春雨,等. 基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释[J]. 新疆石油地质,2017, 38(1): 96-102. Yuan Zhaowei, Duan Zhengjun, Zhang Chunyu,et al. Interpretation of Logging Lithology in Carbonate Reservoirs Based on Markov Chain Probability Model[J]. Xinjiang Petroleum Geology, 2017, 38(1): 96-102.
[12] 张涛,莫修文. 基于交会图与模糊聚类算法的复杂岩性识别[J]. 吉林大学学报(地球科学版),2007,37(1): 109-113. Zhang Tao, Mo Xiuwen. Complex Lithologic Identification Based on Cross Plot and Fuzzy Clustering Algorithm[J]. Journal of Jilin University(Earth Science Edition), 2007,37(1): 109-113.
[13] 王振洲,张春雷,高世臣. 利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例[J]. 油气地质与采收率,2017, 24(6): 25-33. Wang Zhenzhou, Zhang Chunlei, Gao Shichen. Lithology Identification of Complex Carbonate Rocks Based on Decision Tree Method: An Example from Block Sudong 41-33 in Sulige Gas Field[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(6): 25-33.
[14] 江凯,王守东,胡永静,等. 基于Boosting Tree算法的测井岩性识别模型[J]. 测井技术,2018, 42(4): 395-400. Jiang Kai, Wang Shoudong, Hu Yongjing,et al. Lithology Identification Model by Well Logging Based on Boosting Tree Algorithm[J]. Well Logging Technology, 2018, 42(4): 395-400.
[15] 闫星宇,顾汉明,肖逸飞,等. XGBoost算法在致密砂岩气储层测井解释中的应用[J]. 石油地球物理勘探,2019, 54(2): 447-455. Yan Xingyu, Gu Hanming, Xiao Yifei, et al. XGBoost Algorithm Applied in the Interpretation of Tight-Sand Gas Reservoir on Well Logging Data[J]. Oil Geophysical Prospecting, 2019, 54(2): 447-455.
[16] 李大中,王超,李颖宇. 基于XGBoost算法的风机叶片结冰状态评测[J]. 电力科学与工程,2019, 35(9): 43-48. Li Dazhong, Wang Chao, Li Yingyu. Evaluation of Fan Blade Icing Based on XGBoost Algorithm[J]. Electric Power Science and Engineering, 2019, 35(9): 43-48.
[17] 蒋晋文,刘伟光. XGBoost算法在制造业质量预测中的应用[J]. 智能计算机与应用,2017, 7(6):58-60. Jiang Jinwen, Liu Weiguang. Application of XGBoost Algorithm in Manufacturing Quality Prediction[J]. Intelligent Computer and Applications, 2017, 7(6): 58-60.
[18] 仲鸿儒,成育红,林孟雄,等. 基于SOM和模糊识别的复杂碳酸盐岩岩性识别[J]. 岩性油气藏,2019, 31(5): 84-91. Zhong Hongru, Cheng Yuhong, Lin Mengxiong, et al. Lithology Identification of Complex Carbonate Based on SOM and Fuzzy Recognition[J]. Lithologic Reservoirs, 2019, 31(5):84-91.
[19] 钟仪华,李榕. 基于主成分分析的最小二乘支持向量机岩性识别方法[J]. 测井技术,2009, 33(5): 425-429. Zhong Yihua, Li Rong. Application of Principal Component Analysis and Least Square Support Vector Machine to Lithology Identification[J]. Well Logging Technology, 2009, 33(5): 425-429.
[20] 单敬福,陈欣欣,赵忠军,等. 利用BP神经网络法对致密砂岩气藏储集层复杂岩性的识别[J]. 地球物理学进展,2015, 30(3): 1257-1263. Shan Jingfu, Chen Xinxin, Zhao Zhongjun,et al. Identification of Complex Lithology for Tight Sandstone Gas Reservoirs Based on BP Neural Net[J]. Progress in Geophysics, 2015, 30(3): 1257-1263.
[1] Xiong Yuehan, Liu Dongyan, Liu Dongsheng, Wang Yanlei, Tang Xiaoshan. Automatic Lithology Classification Method Based on Deep Learning of Rock Sample Meso-Image [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1597-1604.
[2] Mou Dan, Zhang Lichun, Xu Changling. Comparison of Three Classical Machine Learning Algorithms for Lithology Identification of Volcanic Rocks Using Well Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 951-956.
[3] Zhang Yapu, Yang Zhengming, Huang Yanzhang, Li Haibo, Hou Haitao, Zhu Guangya. Study on Reservoir Characteristics and Remaining Oil Distribution of Low Permeability Pore Type Carbonate Rock [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 659-668.
[4] Shi Jizhong, Niu Yazhuo, Xu Wei, Song Bo, Wang Baowen. Geochemical Characteristics and Sedimentary Environment of Carboniferous Baishan Formation Carbonate in Shibanquanxi of Yingen-Ejin Banner Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 680-693.
[5] Wang Yuxiang, Gu Yi, Fu Qiang, Wang Bin, Wan Yanglu, Li Yingtao. Characteristics and Genesis of Deep Carbonate Reservoirs in Shunbei Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 932-946.
[6] Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 611-620.
[7] Wu Heyuan, Zhao Zongju, Wang Jianguo, Wang Peixi, Gong Faxiong, Xiao Fei. Cambrian Sequence Stratigraphic Framework in Northern Margin of North China Craton [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1609-1624.
[8] Luo Shaohui, Li Jiumei, Wang Hui. Age Determination of Dolomite Breccia in Well PSBX1 of Markit Slope in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1405-1415.
[9] Ma Boyong, Wang Genhou, Li Shanglin, Xu Hongyan. Characteristics of Mixed Sedimentations and Diagenesis of Terrigenous Clastic Rock and Carbonate:The Middle Jurassic in the East Qiangtang Basin, Tibet, China [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1310-1321.
[10] Zhou Linfei, Chen Qixin, Cheng Qian, Zhang Jing. Remote Sensing Classification Information Extraction Based on Rough Set Theory [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1246-1256.
[11] Zhang Guangzhi, Chen Jiaojiao, Chen Huaizhen, Zhang Jinqiang, Yin Xingyao. Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 630-638.
[12] Lu Gongda, Yan Echuan, Wang Huanling, Wang Xueming, Xie Liangfu. Prediction on Uniaxial Compressive Strength of Carbonate Based on Geological Nature of Rock [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1915-1921.
[13] GAO Zhi-qian, FAN Tai-liang, YANG Wei-hong, WANG Xin. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin [J]. J4, 2012, 42(3): 657-665.
[14] XU Chang-fu, LI Xiong-yan, TAN Feng-qi, YU Hong-yan, LI Hong-qi. Task-Driven Data Mining and Its Application of Identifying the Low Resistivity Oil Reservoir[ [J]. J4, 2012, 42(1): 39-46.
[15] WANG Ying-wei, ZHANG Jian-min, WANG Man, PAN Bao-zhi, GXING Yan-juan, SHI Dan-hong. Simulation of Lithology and Porosity of Volcanic Rock Reservoir Based on Sequential Indicator Simulation [J]. J4, 2010, 40(2): 455-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .