Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1366-1380.doi: 10.13278/j.cnki.jjuese.20200315

Previous Articles     Next Articles

Comparison of Methods for Determining Sand Dynamic Shear Modulus and Damping Ratio

Song Dongsong1,2, Feng Zhen1,2, Jin Hongshan3, Sun Yihan1,2   

  1. 1. Hebei Civil Engineering Monitoring and Evaluation Technology Innovation Center, Hebei University, Baoding 071002, Hebei, China;
    2. College of Civil Engineering and Architecture, Hebei University, Baoding 071002, Hebei, China;
    3. 91144 Troops, Dalian 116041, Liaoning, China
  • Received:2020-12-21 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration(2019EEEVL0202) and the Natural Science Foundation of Hebei Province (E2020201017,E2019201422)

Abstract: At present, the commonly used methods to determine the dynamic shear modulus of soil include the standard method, the Kumar method and the autocorrelation function method. The methods to determine the corresponding damping ratio include the standard method, the Das and Luo method, the Kokusho method, the Kumar method, and the cross-correlation function method. So far, the understanding of the differences caused by the different methods is not deep enough, and there is a lack of quantitative comparative analysis. In this study, the Fujian standard sand (particle size 0.5-1.0 mm) was used as the research object, and the undrained stress-controlled dynamic triaxial test was used to discuss the differences of the different methods so as to determine the dynamic shear modulus and damping ratio of the sand, and then to recommend the method to use. The results show that:1) The dynamic shear modulus determined by the three methods has a certain difference. The difference gradually increases with the increase of the shear strain, but the difference decreases with the increase of the effective confining pressure. When the shear strain is 4×10-3 and the effective confining pressure is 100 kPa, the difference between the three methods is the most significant, and the maximum relative error is close to 20%. 2) The damping ratios of the five methods have significant differences. The relative errors of the five methods for determining the damping ratio decrease rapidly with the increase of the shear strain; When the effective confining pressure is 100 kPa, the damping ratio only by the standard method has a smaller increasing trend. Among them, the damping ratio determined by the Kumar method is closest to the average damping ratio, the damping ratio by the cross-correlation function method is much higher than the average damping ratio, and the damping ratio determined by the Das and Luo method and the Kokusho method is basically the same but lower than the average damping ratio. So, it is recommended that in future engineering applications, when the loading method is stress control, the correlation function method can be used to determine the dynamic shear modulus and the Kumar method to determine the damping ratio.

Key words: standard method, Kumar method, autocorrelation function method, Das and Luo method, Kokusho method, cross-correlation function method, dynamic shear modulus, damping ratio, sand

CLC Number: 

  • TU4
[1] 蒋其峰, 荣棉水, 彭艳菊. 动剪切模量比对反应谱影响的定量分析[J]. 吉林大学学报(地球科学版), 2015, 45(3):876-885. Jiang Qifeng, Rong Mianshui, Peng Yanju. Quantitative Analysis of the Effect of Dynamic Shear Modulus Ratio on Response Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):876-885.
[2] 黄芮, 张延军, 李洪岩, 等. 辽河三角洲相沉积软土动力特性试验[J]. 吉林大学学报(地球科学版), 2010, 40(5):1115-1120. Huang Rui, Zhang Yanjun, Li Hongyan, et al. Dynamic Characteristics of Sedimentary Soft Soil in the Liaohe Delta[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5):1115-1120.
[3] 兰景岩, 刘红帅, 吕悦军, 等. 表层土剪切波速的不确定性对地表设计谱平台值的影响[J]. 吉林大学学报(地球科学版), 2012, 42(3):770-776. Lan Jingyan, Liu Hongshuai, Lü Yuejun, et al. The Influence of the Uncertainty of Surface Soil Shear Wave Velocity on the Platform Value of Surface Design Spectrum[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(3):770-776.
[4] Seed H B, Idriss I M. Soil Moduli and Damping Factors for Dynamic Response Analyses[R]. Berkeley:Earthquake Engineering Research Centre, 1970.
[5] Amr M M, Manal A S, Hussein H E. Evaluation of Dynamic Properties of Calcareous Sands in Egypt at Small and Medium Shear Strain Ranges[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:692-708.
[6] Jafarian Y, Javdanian H, Haddad A. Dynamic Properties of Calcareous and Siliceous Sands Under Isotropic and Anisotropic Stress Conditions[J]. Soils and Foundations, 2018, 58:172-184.
[7] Pradeep K D, Adapa M K, Subhamoy B. Dynamic Soil Properties for Seismic Ground Response Studies in Northeastern India[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:357-370.
[8] Dutta T T, Saride S. Influence of Shear Strain on the Poisson's Ratio of Clean Sands[J]. Geotechnical and Geological Engineering, 2016, 34:1359-1373.
[9] Eka C, Jl A, Akb C, et al. Dynamic Behavior of Clay Modifed with Polypropylene Fber Under Freeze-Thaw Cycles[J]. Transportation Geotechnics, 2019, 21:1-12.
[10] Jafarzadeh F, Sadeghi H. Experimental Study on Dynamic Properties of Sand with Emphasis on the Degree of Saturation[J]. Soil Dynamics & Earthquake Engineering, 2012, 32:26-41.
[11] Wichtmann T, Ma N H, Triantafyllidis T. On the Influence of A Non-Cohesive Fines Content on Small Strain Stiffness, Modulus Degradation and Damping of Quartz Sand[J]. Soil Dynamics and Earthquake Engineering, 2015, 69:103-114.
[12] Pham H H G, Peter O V I, William F V I, et al. Small-Strain Shear Modulus of Calcareous Sand and Its Dependence on Particle Characteristics and Gradation[J]. Soil Dynamics and Earthquake Engineering, 2017, 100:371-379.
[13] Carraro J, Bortolotto M S. Stiffness Degradation and Damping of Carbonate and Silica Sands[C]//Frontiers in Offshore Geotechnics:III:Meyer. London:Taylor & Francis Group, 2015:1179-1183.
[14] Orakoglu M E, Liu J, Niu F. Dynamic Behavior of Fiber-Reinforced Soil Under Freeze-Thaw Cycles[J]. Soil Dynamics and Earthquake Engineering, 2017, 101:269-284.
[15] Ling X Z, Zhang F, Li Q L, et al. Dynamic Shear Modulus and Damping Ratio of Frozen Compacted Sand Subjected to Freeze-Thaw Cycle Under Multi-Stage Cyclic Loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 76(2):111-121.
[16] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. Standard for Geotechnical Testing Method:GB/T 50123-2019[S]. Beijing:China Planning Press, 2019.
[17] Kumar S S, Krishna A M, Dey A. Evaluation of Dynamic Properties of Sandy Soil at High Cyclic Strains[J]. Soil Dynamics and Earthquake Engineering, 2017, 99.
[18] Das B M, Luo Z. Principles of Soil Dynamics[M]. 3rd ed. Stanford:Cengage Learning, 2016.
[19] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental Study on the Influence of Load Frequency on Dynamic Modulus Damping Ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80.
[20] Kokusho T. Cyclic Triaxial Test of Dynamic Soil Properties for Wide Strain Range[J]. Soils and Foundation, 1980, 20(2):45-60.
[21] 刘保健, 周加林. 土阻尼比的滞后角测试法[J]. 大坝观测与土工测试, 1995, 19(4):37-40. Liu Baojian, Zhou Jialin. The Method of Measuring the Phase Angle of Damping Ratio[J]. Dam Observation and Geotechnical Tests, 1995, 19(4):37-40.
[22] 罗飞, 赵淑萍, 马巍, 等. 冻结黏土的动力学参数确定方法研究[J]. 冰川冻土, 2016, 38(5):1340-1345. Luo Fei, Zhao Shuping, Ma Wei, et al. Research on the Determination Method of Dynamic Parameters of Frozen Clay[J]. Journal of Glaciology and Geocryology, 2016, 38(5):1340-1345.
[23] 梁珂, 陈国兴, 何杨, 等. 基于相关函数理论的动模量和阻尼比计算新方法[J]. 岩土力学, 2019, 40(4):1368-1376, 1386. Liang Ke, Chen Guoxing, He Yang, et al. A New Method for Calculating Dynamic Modulus and Damping Ratio Based on Correlation Function Theory[J]. Rock and Soil Mechanics, 2019, 40(4):1368-1376, 1386.
[24] Green R A, Mitchell J K, Polito C P. An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils[C]//Proceedings of the John Booker Memorial Symposium Sydney, New South Wales, Australia. Rotterdam:A A Balkema Publishers, 2000.
[25] 陈伟, 孔令伟, 朱建群. 一种土的阻尼比近似计算方法[J]. 岩土力学, 2007, 28(增刊1):789-791. Chen Wei, Kong Lingwei, Zhu Jianqun. A Simple Method to Approximately Determine the Damping Ratio of Soils[J]. Rock and Soil Mechanics, 2007, 28(Sup. 1):789-791.
[26] 陈国兴. 岩土地震工程学[M]. 北京:科学出版社, 2007. Chen Guoxing. Geotechnical Earthquake Engineering[M]. Beijing:Science Press, 2007.
[1] Su Liang, Shi Wei, Shui Weihou, Cao Jianmeng. Field Test of High Energy Dynamic Compaction on Hydraulic Sandy Filling [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1560-1569.
[2] Xi Haiyin, Fan Yueye, Wang Guangting, Zhang Yang. Control of Tectonic Evolution on Mineralization of Sandstone Type Uranium Deposits in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1030-1041.
[3] Fan Yufei, Pan Baozhi, Guo Yuhang, Zhang Lihua. Evaluate Electrical Conductivity Models of Clay-Bearing Sandstones by Digital Core Technology [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 919-926.
[4] Zhang Yiming, Qin Xiaoying, Guo Zhiqi, Niu Cong, Wang Di, Ling Yun. Petrophysical Model for Complex Pore Structure and Its Applications in Tight Sand Gas Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 927-939.
[5] Liao Wenhao, Chen Dongxia, Zeng Jianhui, Jiang Wenya, Liu Ziyi, Zhu Chuanzhen, Wang Yifan. Configuration Types of Fault-Sand in Chengbei Fault Terrace Zone of Qikou Sag and Its Control on Hydrocarbon Accumulation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 336-354.
[6] He Zhongbo, Ji Huali, Wei Sanyuan, Cao Jianhui, Lin Xiaobin. Discussion on Prospecting Direction of Sandstone-Type Uranium Deposits in Sanjiang Basin, Heilongjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 367-379.
[7] Zhang Dazhi, Chu Lilan, Zhou Xiang, Wang Xiaolian, Li Xin. Diagenesis and Diagenesis Facies of Tight Gas Reservoir of Shahezi Formation, in Xujiaweizi Fault Depression of North Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 22-34.
[8] Wu Meng, Qin Yong, Wang Xiaoqing, Li Guozhang, Zhu Chao, Zhu Shifei. Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 35-51.
[9] Wei Bo, Zhao Jianbin, Wei Yanwei, Li Zhenlin, Xiong Kui. Reservoir Classification Method in Second Member of Liushagang Formation in Bailian Area, Fushan Sag [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1639-1647.
[10] Hong Yong, Li Zirui, Tang Shaoshuai, Wang Luyang, Li Liang. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1814-1822.
[11] Cui Jingwei, Zhu Rukai. Mechanism of Strong Calcium Cementation in Tight Sandstone and Its Significance:A Case Study on Triassic Chang 7 Oil Formation of Yanchang Formation in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 957-967.
[12] Wu Meng, Zhu Chao, Qin Yunhu, Qin Yong, Shen Jian, Zhao Heng, Zhu Shifei. Geological Evaluation Method of Tight Sandstone Gas Exploitation Potential in Shanxi Formation in Linxing Area [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 991-1002.
[13] Zhang Jian, Zhang Dejun, Zheng Yuejuan, Chen Shuwang, Zhang Haihua, Su Fei, Huang Xin. LA-ICP-MS U-Pb Dating of Detrital Zircons and Geological Implications of Linxi Formation in Linxi County, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1090-1103.
[14] Sheng Chong, Xu Hehua, Zhang Yunfan, Zhang Wentao, Ren Ziqiang. Hydrological Properties of Calcareous Sands and Its Influence on Formation of Underground Freshwater Lenson Islands [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1127-1138.
[15] Yu Yang, Wang Zhuwen, Ning Qinqin, Xu Fanghui. Logging Evaluation of In-Situ Leachable Sandstone Uranium Mineralization in Sifangtai Formation of Daqing Placanticline, Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 929-940.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GAO Song,SONG Ying,WANG Lin,JIANG Buxin. Study on the Screening and Characterization of Special Effective Bacteria of Degrading Thiuram in the Waterbody[J]. J4, 2006, 36(03): 455 -457 .
[2] LI Xian-zhou,LIU Yan,LIU Li-hua,NING Wei-kun,FAN Hai. The Preparation and Characterization of the Kaolin-Hydrazine Intercalation Complex[J]. J4, 2006, 36(04): 659 -662 .
[3] LU Shuang-fang, LI Ji-jun, XUE Hai-tao, XU Li-heng. Chemical Kinetics of Carbon Isotope Fractionation of Oil-Cracking Methane and Its Initial Application[J]. J4, 2006, 36(05): 825 -829 .
[4] DING Zhi-hong,FENG Ping,MAO Hui-hui. Research and Application of a Method Considering Runoff Distribution Through A Year During Partitioning Runoff into Abundant and Low State[J]. J4, 2009, 39(2): 276 -0280 .
[5] YU Xiao-ping, ZHANG Ting-yu, LIU Cai, CHEN Zeng-bao, XU Hui-ping,PANG He-min. Determination of Geoid by GPS and Gravity Data[J]. J4, 2008, 38(5): 904 -0907 .
[6] ZHANG Yuan, WANG Li, TANG Zhen, ZHANG Jia-nan. Geological Character and Fluid Inclusions of Jubao Copper Deposit, Taonan, Jilin Province[J]. J4, 2010, 40(5): 1047 -1052 .
[7] YIN Cheng-ming, REN Shou-mai, TIAN Li-yan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin: Evidences from Analysis of Joints Data[J]. J4, 2011, 41(3): 724 -734 .
[8] LI Jian-ping, LI Tong-lin, ZHANG Hui, XU Kai-jun. Study and Application of the TEM Forward and Inversion Problem of Irregular Loop Source over the Layered Medium[J]. J4, 2005, 35(06): 790 -0795 .
[9] ZHONG Yu-hong,FANG Chun-sheng,QIU Li-min, LV Li-sha, ZHANG Zi-yi, DONG De-ming,YU Lian-gui, LIU Hui, LIU Chun-yang, SU Hong-shi, ZHAO Jing. Application of Electron Microscopic Analysis for the Sources Apportionment of Atmospheric Particles[J]. J4, 2008, 38(3): 473 -0478 .
[10] LIU Jun-lai, TANG Yuan, SONG Zhi-jie, Tran My Dung, ZHAI Yun-feng, WU Wen-bin, CHEN Wen. The Ailaoshan Belt in Western Yunnan:Tectonic Framework and Tectonic Evolution[J]. J4, 2011, 41(5): 1285 -1303 .