Journal of Jilin University(Earth Science Edition) ›› 2022, Vol. 52 ›› Issue (2): 382-389.doi: 10.13278/j.cnki.jjuese.20210102

Previous Articles     Next Articles

Analysis on Porosity Stress Sensitivity of Volcanic Rocks with Different Lithology and Its Influencing Factors:#br# Taking Volcanic Rocks in Changling Fault Depression as an Example

Zhang Lihua1, Wang Min2, Shan Gangyi1, Pan Baozhi1, Cao Yue2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Chang chun 130026,China
    2. Sinopec Northeast Oil & Gas Company, Jilin, Changchun 130000,China
  • Received:2018-05-16 Online:2022-03-27 Published:2022-11-15
  • Supported by:
    the National Natural Science Foundation of China (NSFC 42074119) and  the  National Key  R&D Program of China (2020YFE0201300)

Abstract: In order to understand the pressure sensitivity of porosity of volcanic rocks with different lithology,the representative rock samples of andesite, breccia tuff and tuff in Changling fault depression were collected to measure porosity by gas method under the overburden pressures of 3.4, 8.3, 13.1, 17.9, 22.8, 27.6, 32.4 and 37.2 MPa respectively. The results show that with the increase of pressure, the porosity of the three lithological types of  samples decreases in different ranges, and the decreasing level is tuff, breccia tuff and andesite from large to small,whichindicates that the pore stress sensitivity of tuff is the strongest, breccia tuff is in the middle, and andesite is the weakest. The analyses of whole rock X-ray diffraction, rock slice identification under polarizing microscope, high-pressure mercury porosimeter experiment and nuclear magnetic resonance experiment based on CPMG pulse sequence show that rock composition, particle sorting and pore type are the key factors affecting pore pressure sensitivity; The larger the volume fraction of plastic minerals, the smaller the particles and the smaller the pore size, the stronger the pressure sensitivity of the corresponding porosity.

Key words: volcanic rock, pressure sensitivity, porosity, mercury intrusion, rock thin section, whole rock analysis

CLC Number: 

  • P631.8
[1] Fu Chendong, Wang Aiyun. Improvement of New Three-Water Model and Determination of Its Parameters [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(2): 654-661.
[2] Hou Xianmu, Wang Fuyong, Zai Yun, Lian Peiqing. Prediction of Carbonate Porosity and Permeability Based on Machine Learning and Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(2): 644-653.
[3] Cui Yitong, Wang Zhuwen, Xu Fanghui, Han Ruiyi, Qi Xinghua. Analysis of Fracture Formation Characteristics of Igneous Rock Based  on Stoneley Wave and Electrical Imaging Logging [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(2): 624-632.
[4] Zhang Xue, Weng Kai, Zhao Xiaojian, Du Shouli, Shang Ying. Permian Volcanic Rocks in Kalatage Area, Eastern Tianshan, Xinjiang: Petrogenesis and Tectonic Implications [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1119-1138.
[5] Mou Dan, Zhang Lichun, Xu Changling. Comparison of Three Classical Machine Learning Algorithms for Lithology Identification of Volcanic Rocks Using Well Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 951-956.
[6] Zou Guoqing, Yu Niuben, Sun Guoqing, Huang Xiubao, Nijiati·Abuduxun, Lu Guansong. Geochemical Characteristics and Tectonic Significance of Carboniferous Bimodal Volcanic Rocks in Aoyituolangge Area, Eastern Junggar [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 455-472.
[7] Zhang Dazhi, Chu Lilan, Zhou Xiang, Wang Xiaolian, Li Xin. Diagenesis and Diagenesis Facies of Tight Gas Reservoir of Shahezi Formation, in Xujiaweizi Fault Depression of North Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 22-34.
[8] Wei Bo, Zhao Jianbin, Wei Yanwei, Li Zhenlin, Xiong Kui. Reservoir Classification Method in Second Member of Liushagang Formation in Bailian Area, Fushan Sag [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1639-1647.
[9] Ge Hailong, Zhang Yan, Wang Shengzhu, Yang Kaikai, Liu Xiaokang, Bian Weihua. Zircon U-Pb Age, Geochemical Characteristics and Tectonic Settings of Volcanic Rocks in Jimunai Formation,West Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1075-1089.
[10] Wang Fuyong, Cheng Hui. Characterization of Pore Structure and Petrophysical Properties of Tight Sandstone of Yanchang Formation, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 721-731.
[11] Miao Changsheng, Xu Wen, Liu Yuhu, Xie Rongxiang. Characteristics of Volcanic Reservoirs in Southern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 635-643.
[12] Lin Mengxiong, Liu Li, Zhang Yiguo, Chang Sen, Xia Yang. Analysis of Gas-Water Distribution and Water Production Control Factors in the East 2nd Area of Sulige Gas Field [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 627-634.
[13] Li Bonan, Qu Shouli, Shen Hui. Microscopic Characterization Method of Carbonate Reservoirs Based on Rock Physics Model [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 285-293.
[14] Zhang Shuyi. Geochronology and Geochemistry of Volcanic Rocks in Tamulangou Formation from New Barag Right Banner, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 129-138.
[15] Hong Bo, Li Xi'an, Wang Li, Li Lincui. Permeability Anisotropy and Microstructure of Yan'an Q3 Loess [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1389-1397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .