Journal of Jilin University(Earth Science Edition) ›› 2023, Vol. 53 ›› Issue (4): 1228-1237.doi: 10.13278/j.cnki.jjuese.20210369

Previous Articles     Next Articles

Powdered Activated Charcoal Enhanced the Removal of Iron and Manganese by Ozone Oxidation

Zhang Shaojie1, Liu Shibo2, Yang Wu1, Chen Siqi1   

  1. 1. College of Environment, Northeast Normal University, Changchun 130117, China
    2. Jilin Province Bureau of Hydrology and Water Resources, Changchun 130028, China
  • Received:2021-11-19 Online:2023-07-26 Published:2023-08-11
  • Supported by:
    the National Key R&D Program of China (2019YFE0117900)

Abstract: In order to effectively solve the problem of iron and manganese overload in groundwater, this paper proposes a new method of removing iron and manganese by combining powdered activated carbon (PAC) and ozone, and explores the mechanism of the effect of PAC in treating iron and manganese in water by ozone oxidation. The effect of PAC and ozone on the treatment of Fe and Mn alone was firstly investigated; Then the effect of PAC and ozone on the treatment of Fe and Mn in combination was investigated, and the effect of different conditions (pH, temperature, PAC dosage, and oxidant concentration) on the removal of Fe and Mn in water was investigated; Finally, the mechanism of the effect of PAC on the treatment of Fe and Mn in ozone oxidation water was investigated. The results showed that PAC could enhance the oxidation of Fe and Mn by ozone under different conditions. Under the conditions of PAC dosage of 0.3 g/L, ozone mass concentration of 5 mg/L, pH of 7.0, and room temperature, the mass concentration of Fe and Mn mixed solution rapidly decreased from 0.5 mg/L to 0.1 mg/L within 5 min, which met the requirements of corresponding emission standards; With the increase of PAC dosage, the residual concentrations of Fe and Mn gradually decreased, which indicated that the reaction was highly dependent on the active sites on the surface of PAC, further confirming the effect of PAC on the removal of Fe and Mn from water. The characterization results such as scanning electron microscopy (SEM) and Mapping analysis showed that the reaction formed iron oxide and manganese oxide coatings on the surface of PAC, and these oxide coatings would further accelerate the removal of free iron and manganese from water.

Key words: iron removal, manganese removal, powdered activated charcoal, ozone, adsorption, oxidation

CLC Number: 

  • X52
[1] Li Yan, Nie Fengjun, Wang Dongxu, Jia Licheng, Lu Shengjun, Yan Zhaobin, Luo Min, Liu Xiaohui. Mineralization Potential Analysis of Sandstone-Type Uranium Deposits in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2023, 53(4): 1075-1089.
[2] Liu Na, Wang Jinxin, Jiao Xinqian, Luo Feng. Removal of Perfluorooctanoic Acid (PFOA) in Aqueous Solution Using Highly Adsorptive Coal Chemical Slag [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1853-1862.
[3] Yang Yuesuo, Zhu Yidan, Zhang Wenqing, Wu Yuhui, Yu Tong, Zhang Dazhi. Co-Migration of Nickel and Natural Colloids in Groundwater System [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 226-233.
[4] Song Zhiwei, Li Ting, Yi Hongyun, Qiu Jie, Zhang Di, Chen Danfeng. Adsorption Mechanism of Aerobic Granular Sludge to Organic Pollutants [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 868-873.
[5] Liu Na, Yang Yadong, Alberto Bento Charrua, Wang Hang, Ye Kang, Lü Chunxin. Optimization of Atrazine Removal from Aqueous Solution by Biochar Using Response Surface Methodology [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1199-1207.
[6] Dong Deming, Cao Zhen, Yan Zhengchu, Hua Xiuyi, Zhu Lei, Xu Yang, Guo Zhiyong, Liang Dapeng. Treatment Research of Polyvinyl Alcohol Wastewater by Ozone/Ultrasound Oxidation Process [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1191-1198.
[7] WANG Jian, XIE Zhi-peng, XU Wen-liang, Keiko Hattori. Origin of Ultramafic Xenoliths in High-Mg Pyroxene-Diorites from Western Shandong Province: Evidence from Oxidation State (fO2) and Platinum Group Elements [J]. J4, 2012, 42(5): 1390-1403.
[8] ZHANG Xian-fu, LI Hui, HONG Mei, SONG Bo-yu, ZHANG Fu-quan, LIANG Shuang. Effects of Saline-Alkali Soil on Nitrogen Transformations [J]. J4, 2012, 42(4): 1145-1150.
[9] ZOU Dong-lei, TANG Shu-yuan, XIONG Hou-feng, TANG Shao-fu, LI Chun-hua, CHEN Peng. Adsorption Characteristic of Chlorobenzene in Water by β-Cyclodextrin Cross-Linked Polymer [J]. J4, 2012, 42(4): 1166-1172.
[10] HUANG Guan-xing, WANG Ying, LIU Jing-tao, ZHANG Yu-xi, ZHANG Ying. Lead(Ⅱ) Adsorption and Desorption onto the Sewage Irrigation Soil [J]. J4, 2012, 42(1): 220-225.
[11] GUO Ping, SONG Yang, XIE Zhong-lei, ZHANG Ying-xin, LI Yue-Ming, ZHANG Sai. Effect of Freeze-Thawing Cycles on Adsorption-Desorption of Lead and Cadmium in Black Soil and Brown Soil [J]. J4, 2012, 42(1): 226-232.
[12] ZHANG Lan-ying, ZHANG Lei, YUE Jian-wei, LIU Na, SUN Heng-zhan. Research on Biochemical Treatment Process of Morpholine Wastewater [J]. J4, 2011, 41(2): 536-540.
[13] LI Yu, LI Juan, GAO Qian, WANG Ao. Effect of Coexistent Cd-Cu on Atrazine Adsorption onto Main Components in Sediments(Surface Coatings) [J]. J4, 2010, 40(6): 1435-1440.
[14] HUANG Ji-guo, GAO Wen-han, DONG Li-li, MENG Yu-li, ZHOU Xiu, YANG Liu. Experiment on Low C/N Ratio Domestic Wastewater Treatment by ABR &|Biocontact Oxidation Process [J]. J4, 2010, 40(5): 1163-1169.
[15] YANG Dian-fan, WEI Cun-di, NING Wei-kun, XU Shao-naa, JIANG Yin-shan. Structure and Adsorption Properties of Nenjiang Opal Shale [J]. J4, 2010, 40(5): 1061-1065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .