Journal of Jilin University(Earth Science Edition) ›› 2024, Vol. 54 ›› Issue (2): 688--700.doi: 10.13278/j.cnki.jjuese.20230004

Previous Articles     Next Articles

Optimization and Application of Organic Carbon Logging Prediction Models for Source Rocks: A Case Study of Chang 9 Member of Yanchang Formation in Ansai Area, Ordos Basin

Feng Ruoqi1, Liu Zhengwei2, Meng Yue2, Jiang Liting2, Han Zuowei2, Liu Linyu1   

  1. 1. State Key Laboratory of Continental Dynamics / Department of Geology, Northwestern University, Xi’an 710069, China

    2. No.1 Oil Production Plant, PetroChina Changqing Oilfield Company, Xi’an 710018, China

     

  • Online:2024-03-26 Published:2024-04-10
  • Supported by:
    Supported by the National Natural Science Foundation of China (41972129)

Abstract: Total organic carbon (TOC) mass fraction is an important index of source rocks evaluation. In order to evaluate the organic carbon of source rocks in Chang 9 Member of Yanchang Formation in Ansai area, southeast Ordos basin, firstly,this article  establishes w(TOC) models for quantitative prediction of well logging by applying the multiple regression model, the traditional Δlog R model, the improved Δlog R model and the generalized Δlog R model, based on core analysis of measured w(TOC) data and  the response characteristics of source rocks to different logging curves.  Secondly, by   analyzing and combining  these models,  the fitting superposition coefficient  extracted from the improved Δlog R model is applied  to the calculation of two generalized Δlog R models, and the application effect is  good. Finally, the four models are compared and optimized, and the most suitable quantitative prediction model for source rocks in the study area is proposed. The results show that the generalized Δlog R model considering the density factor has the highest accuracy, with an average relative error of 7.78%; The multiple regression  model   has the second highest accuracy, with an average relative error of 9.65%. Both of them can meet the accuracy requirements of quantitative prediction of w(TOC).

Key words: logging prediction method, Δlog R, organic carbon, source rocks, multiple regression, Ordos basin, Yanchang Formation

CLC Number: 

  • TE132
[1] Li Yonglin, Ni Zhiyong, Li Xiaoguang, Han Zijing, Zhang Wei, An Chuan. Difference of Fault-Controlled Gas Reservoir in Hangjinqi Area, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2024, 54(3): 773-783.
[2] Yu Guangzhan, Wang Jian, Wu Nan, Xu Qinghai, Liu Xianfeng, Fu Qingmeng. Micropore Structure Evaluation of Chang 7 Tight Sandstone in Zhijing-Ansai Area, Ordos Basin#br# [J]. Journal of Jilin University(Earth Science Edition), 2024, 54(1): 83-95.
[3] Liu Shuo, Wang Fei, Yu Rui, Gao Jianxing, Shi Hao, Zhu Yushuang. Micro Pore Throat Structure and Fractal Characteristics of Tight Sandstone Reservoir#br# [J]. Journal of Jilin University(Earth Science Edition), 2024, 54(1): 96-107.
[4] Fu Li. Geochemical Characteristics of Source Rocks and Oil Origins of Jiufengshan Formation in Southern Depression of Dayangshu Basin [J]. Journal of Jilin University(Earth Science Edition), 2023, 53(4): 1001-1015.
[5] Wang Xiaolin, Zhang Xiaoli, Wang Xiang, Cao Cong. Source Rocks Evaluation and Resource Potential Analysis of Chang 7 Member and Chang 9 Member of Yanchang Formation in Zaoyuan Exploration Area, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(3): 840-854 .
[6] Li Tianjun, Huang Zhilong, Wang Rui, Gou Hongguang, Zhang Pin, Yin Yue. Geochemical Characteristics and Formation Environment of Effective Hydrocarbon Source Rock of the Lower Cretaceous Bayingebi Formation in Tiancao Sag, Yingen-Ejinaqi Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 957-972.
[7] Tang Jie, Chen Jingshu, Li Zhaoyang, Wang Jingjing, Lü Hang. Response of Organic Carbon Mineralization and Priming Effect to Nitrogen and Phosphorus Addition in Saline-Alkali Farmland in Western Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1204-1216.
[8] Tan Sizhe, Hou Kaiwen, Qin Jun, Tang Rui, Yang Min. Differences in Pyrolysis Hydrocarbon Generation and Hydrocarbon Exploration of Different Coal-Measures Source Rocks in Pinghu Formation, Xihu Sag [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 968-978.
[9] Cui Jingwei, Zhu Rukai. Mechanism of Strong Calcium Cementation in Tight Sandstone and Its Significance:A Case Study on Triassic Chang 7 Oil Formation of Yanchang Formation in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 957-967.
[10] Kang Liming, Ren Zhanli, Zhang Lin, Wei Bin, Wang Wubing. Fracture Characteristics of Chang 6 Tight Oil Reservoir in Block Y in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 979-990.
[11] Wang Fuyong, Cheng Hui. Characterization of Pore Structure and Petrophysical Properties of Tight Sandstone of Yanchang Formation, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 721-731.
[12] Jia Jianliang, Liu Zhaojun, Meng Qingtao, Sun Pingchang, Xu Jinjun, Liu Rong, Bai Yueyue. Response Mechanism Between Oil Yield and Total Organic Carbon of Non-Marine Oil Shale in China [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 368-377.
[13] Zhang Lei, Fan Hongbo, Hou Wei, Zhang Wei, Hao Shuai, Sun Xiaoguang. Production Profile Test Technology and Application of Coalbed Methane [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 617-626.
[14] Li Xiangdong, He Youbin. REE Geochemistry and Indicators of Sedimentary Media of Limestone at Top of Xujiajuan Formation, Xiangshan Group in Ningxia Autonomous Region, China [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 139-157.
[15] Ji Wei. Gas Water Relative Flow of Tight Sandstone Gas Reservoirs and Its Influencing Factors: Case Study of Member 8 of Permian Xiashihezi Formation and Member 1 of Permian Shanxi Formation in Shaan Well 234-235 Area of Sulige Gas-Field in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1540-1551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .