Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (1): 91-104.doi: 10.13278/j.cnki.jjuese.201601109

Previous Articles     Next Articles

Infrared Micro-Thermometry of Fluid Inclusions in Sphalerite and Geological Significance of Huize Super-Large Zn-Pb-(Ge-Ag) Deposit, Yunnan Province

Han Runsheng1, Li Bo1, Ni Pei2, Qiu Wenlong1, Wang Xudong2, Wang Tiangang2   

  1. 1. Faculty of Land and Resource Engineering, Kunming University of Science and Technology/Southwest Institute of Geological Survey, Geological Survey Centre for Nonferrous Metals Resources, Kunming 650093, China;
    2. State Key Laboratory for Mineral Deposit Research/Institute of Geo-Fluids/School of Earch Science and Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-05-12 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by the National Natural Science Foundation (U1133602, 40863002, 41572060), Main Program for the Natural Science Foundation of Yunnan Province (2010CC005), Special Exploration Program for National Crisis Mines (20089943), and Projects of YMLab and Innovation Team of Yunnan Province (2010) and KMUST(2008)

Abstract:

Infrared micro-thermometry technique is efficient to study fluid inclusions in opaque-translucent minerals by connecting the infrared microscopy with cooling-heating table. The sphalerite-hosted fluid inclusions in Huize super-large Zn-Pb-(Ag-Ge) deposit have been studied by this technique. There are six types of sphalerite-hosted fluid inclusions, including pure gaseous inclusions(V), pure liquid inclusions(L), gas-aqueous inclusions with aqueous-rich(L+V), gas-aqueous inclusions with rich gas(L+V), three-phase inclusions containing a daughter(L+V+S), and LCO2+LH2O+VCO2 three-phase inclusions. Two types of gas-aqueous fluid inclusions with rich liquid and pure liquid(L) can be only seen in calcite. The homogenous temperature of sphalerite-hosted fluid inclusions ranges from 100 to 364℃, in which two distinct temperature sectors are 150-221℃ and 320-364℃, with the average capture temperature 232℃. The salinity of sphalerite-hosted fluid inclusions has three distinct sectors of 1.1%-5.0%, 5.0%-11.0%,and 12.0%-18.0%. The homogenous temperatures of sphalerite-hosted fluid inclusions of different mineralization stages reflect the evolution of the ore-forming fluids in the whole process; while the calcite-hosted fluid inclusions indicate the middle and late mineralization stages of the ore-forming fluids. Comparing with the paragenetic gangue mineral, the homogenous temperatures of fluid inclusions in sphalerite are higher, which indicates that sphalerite-hosed fluid inclusions carry more information of ore-forming fluids. From early to late mineralization stages, ore-forming fluids might have experienced the evolution of medium-high temperature and medium salinity →medium-low temperature and medium salinity →medium-low temperature and medium-low salinity. The capture temperature of fluid inclusions reflects that ore-forming fluids of early stage occurred in medium-high temperature. The features further confirm that different from the typical MVT Zn-Pb deposit, Huize deposit is not a low-temperature deposit. The infrared micro-thermometry technique has provided an ideal method to study the p-T-x conditions of ore-forming fluids and the genesis of Zn-Pb deposits in the northeast Yunnan Province.

Key words: fluid inclusions in sphalerite, infrared micro-thermometry, genesis of HZT-type deposit, Huize super-large Ge-rich zinc-lead deposit, northeastern Yunnan deposit concentration district

CLC Number: 

  • P618.4

[1] Campbell A R, Hackbarth C J, Plumlee G S,et al. Internal Features of Ore Minerals Seen with the Infrared Microscope[J]. Economic Geology, 1984, 79:1387-1392.

[2] Campbell A R,Robinson-Cook S. Infrared Fluid Inclusion Microthermometry on Coexisting Wolframite and Quartz[J]. Economic Geology, 1987, 82:1640-1645.

[3] Campbell A R,Panter K S. Comparison of Fluid Inclusions in Coexisting (Cogenetic?) Wolframite, Cassiterite and Quartz from St Michel's Mount and Cligga Head, Cornwall, England[J]. Geochim. Cosmochim,Acta, 1990, 54:673-683.

[4] Ni Pei, Zhu Xia, Wang Rucheng, et al. Constraining Ultrahigh-Pressure (UHP) Metamorphism and Titanium Ore Formation from an Infrared Microthermometric Study of Fluid Inclusions in Rutile from Donghai UHP Eclogites, Eastern China[J]. Geological Society of America Bulletin, 2008, 120(9/10):1296-1304.

[5] 朱霞, 倪培, 黄建宝, 等. 显微红外测温技术及其在金红石矿床中的应用[J]. 岩石学报, 2007, 23(9):2052-2058. Zhu Xia, Ni Pei, Huang Jianbao, et al. Introduction to Infrared Micro-Thermometric Technique:An Example from Fluid Inclusion Study in Rutile Deposits[J]. Acta Petrologica Sinica, 2007, 23(9):2052-2058.

[6] Francisco Javier Rios,Raimundo Netuno Villas,Kazuo Fuzikawa.Fluid Evolution in the Pedra Wolframite Ore Deposit, Paleoproterozoic Musa Granite, Eastern Amazon Craton, Brazil[J]. Journal of South American Earth Science, 2003, 15:787-802.

[7] Kouzmanov K, Bailly L, Ramboz C,et al. Morphology, Origin and Infrared Microthermometry of Fluid Inclusions in Pyrite from the Radka EpitherBulgaria[J]. Mineralium Deposita, 2002, 37:599-613.

[8] 卢焕章, 李秉伦, 沈昆,等. 流体包裹体地球化学[M]. 北京:地质出版社, 1990:56-228. Lu Huanzhang, Li Binglun, Shen Kun, et al. Geochemistry of Fluid Inclusions[M]. Beijing:Geological Publishing House, 1990:56-228.

[9] Luders V,Reutel C. Fluid Inclusion Studies in Sulfo-salts from Hydrothermal Vein Deposits of the Harz Mountains by Infra-Red Microscopy[J]. Eur J Mineral, 1994, 6(1):364.

[10] Luders V. Contribution of Infrared Microscopy to Fluid Inclusion Studies in some Opaque Minerals (Wolframite, Stibnite, Bournonite):Metallogenic Implications[J]. Econ Geol, 1996, 91:1462-1468.

[11] Luders V, Ziemann M. Possibilities and Limits of Lnfrared Light Microthermometry Applied to Studies of Pyrite-Hosted Fluid Inclusions[J]. Chemical Geology, 1999, 154:169-178.

[12] Lindaas S E, Kuliz J,Campbell A R. Near-Infrared Observation and Microthermometry of Pyrite-Hosted Fluid Inclusions[J]. Economic Geology, 2002, 97:603-618.

[13] 韩润生, 陈进, 黄智龙,等. 构造成矿动力学及隐伏矿定位预测:以云南会泽铅锌(银、锗)矿床为例[M]. 北京:科学出版社, 2006:1-200. Han Runsheng, Chen Jin, Huang Zhilong, et al. Dynamics of Tectonic Ore-Forming Process and Localization-Prognosis of Concealed Orebodies:As Exemplified by the Huize Surper-Large Zn-Pb-(Ag-Ge) District, Yunnan[M]. Beijing:Science Press, 2006:1-200.

[14] 陈士杰. 黔西滇东北铅锌矿床的沉积成因探讨[J]. 贵州地质, 1984, 8(3):35-39. Chen Shijie. A Discussion on the Sedimentary Origin of Pb-Zn Deposits in Western Guizhou and Nor-theastern Yunnan[J]. Journal of Guizhou Geology, 1984, 8(3):35-39.

[15] 陈进. 麒麟厂铅锌硫化物矿床成因及成矿模式探讨[J]. 有色金属矿产与勘查, 1993(2):85-90. Chen Jin. A Discussion on the Genesis and Metallogenic Model of the Qilinchang Pb-Zn Sulfide Deposit[J]. Journal of Non-Ferrous Mineral Resources and Exploration, 1993(2):85-90.

[16] 韩润生, 刘丛强, 黄智龙,等. 论云南会泽富铅锌矿床成矿模式[J].矿物学报, 2001, 21(4):674-680. Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Study on the Metallogenic Model of the Huize Pb-Zn Deposit in Yunnan Province[J]. Acta Minera-logica Sinica, 2001, 21(4):674-680.

[17] Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Sources of Ore-Forming Fluid in Huize Zn-Pb-(Ag-Ge) District, Yunnan, China[J]. Acta Geologica Sinica, 2004, 78(2):583-591.

[18] Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Geological Featares and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan[J]. Ore Geology Reviews, 2007, 31:360-383.

[19] Han Runsheng, Zou Haijun, Hu Bin, et al. Features of Fluid Inclusions and Sources of Ore-Forming Fluid in the Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China[J]. Acta Petrological Sinica, 2007, 23(9):2109-2118.

[20] 韩润生, 胡煜昭, 王学琨, 等. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 2012, 86(2):280-294. Han Runsheng,Hu Yuzhao, Wang Xuekun, et al. Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in Nor-theastern Yunnan, China[J]. Acta Geologica Sinica, 2012, 86(2):280-293.

[21] Huang Zhilong, Li Wenbo, Chen Jin, et al. C and O Isotope Constraints on the Mantle Fluids Join the Mineralization of the Huize Super-Large Pb-Zn Deposits, Yunnan Province, China[J]. J Geochem Explor, 2003(78/79):637-642.

[22] 黄智龙, 陈进, 韩润生, 等. 云南会泽超大型铅锌矿床地球化学及成因:兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社,2004:1-187. Huang Zhilong,Chen Jin,Han Runsheng,et al.Geo-chemistry and Ore Gensis of Huize Super-Large Lead-Zinc Deposit, Yunnan Province:Concurrently Discuss the Relationship Between Emeishan Basalt and Lead-Zinc Deposits[M]. Beijing:Geological Publishing House, 2004:1-187.

[23] 柳贺昌,林文达. 滇东北铅锌银矿床规律研究[M]. 昆明:云南大学出版社, 1999:1-468. Liu Hechang, Lin Wenda. Metallogenic Rules of Zn-Pb-(Ag) Deposits in Northeastern Yunnan[M]. Kunming:Yunnan University Publishing House, 1999:1-468.

[24] 张位及. 试论滇东北铅锌矿床的沉积成因和成矿规律[J]. 地质与勘探, 1984(7):11-16. Zhang Weiji. A Preliminary Discussion on the Sedimentary Origin and Metallogenic Rule of Pb-Zn Deposits in Northeastern Yunnan[J]. Journal of Geology and Exploration, 1984(7):11-16.

[25] 赵准. 滇东、滇东北地区铅锌矿床的成矿模式[J]. 云南地质, 1985, 14(4):350-354. Zhao Zhun. Metallogenic Model of Pb-Zn Deposits in Northeastern Yunnan[J]. Journal of Yunnan Geology, 1985, 14(4):350-354.

[26] Zhou Chaoxian, Wei Chunsheng, Guo Jiyun, et al. The Source of Metals in the Qilingchang Pb-Zn Deposit, Northeastern Yunnan, China:Pb-Sr Isotope Constraints[J]. Econ Geol, 2011, 96:583-598.

[27] 王国光, 倪培, 赵葵东, 等. 江西银山铅锌矿床闪锌矿与石英流体包裹体的对比研究[J]. 岩石学报, 2011, 27(5):1387-1396. Wang Guoguang, Ni Pei, Zhao Kuidong, et al. Comparison of Fluid Inclusions in Coexisting Sphalerite and Quartz from Yinshan Deposit, Dexing, Northeast Jiangxi Province[J].Acta Petrologica Sinica, 2011, 27(5):1387-1396.

[28] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:科学出版社, 2004:132-143. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusions[M]. Beijing:Science Press, 2004:132-143.

[1] Tan Shucheng, Guo Xiangyu, He Xiaohu, Xie Zhipeng, Zhang Yahui, Li Huimin, Hao Shuang. Mineral Chemical Characteristics and Genesis of Cassiterite in Gejiu Tin-Polymetallic Deposit, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 736-753.
[2] Qi Fanyu, Zhang Zhi, Zhu Xinyou, Li Yongsheng, Zhen Shimin, Gong Fanying, Gong Xiaodong. Mineral Characteristics and Geological Significance of the Baoshan Cu-Pb-Zn Polymetallic Deposit in Hunan Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 754-768.
[3] Tang Wenlong, Sun Hongwei, Liu Xiaoyang, Wang Jie, Zuo Libo, Wu Xingyuan. Metallogeny and Resource Potential of Nickel Deposits in Mid-Southern Africa [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 53-69.
[4] Wu Denghao, Gao Shunbao, Zheng Youye, Tian Kan, Zhang Yongchao, Jiang Junsheng, Yu Zezhang, Huang Pengcheng. Sulfur and Lead Isotopic Composition and Their Ore-Forming Material Source of Skarn Copper Polymetallic Deposits in Southern Tibet Bangonghu-Nujiang Metallogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 70-86.
[5] Ruan Dawei, Li Shunda, Bi Yaqiang, Liu Xingyu, Chen Xuhu, Wang Xingyuan, Wang Keyong. Ore-Controlling Structures and Deep Metallogenic Prediction of Aerhada Pb-Zn Deposit in Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1705-1716.
[6] Chen Jingyuan, Wang Changming, He Xinyu, Chen Liang, Wu Bin, Wang Qiao, Zhang Duan, Yao Enya, Dong Mengmeng. Characteristics of Geology, Fluid Inclusions and Stable Isotope of Wafang Pb-Zn Deposit in Henan [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1383-1404.
[7] Geng Yanguang, Jian Wei, Li Hongying, Ye Huishou, Bi Minfeng, Hu Qiaoqing, Li Chao, Fan Chenglong, Wang Mengqi. Re-Os Isotopic Dating of Molybdenite from Bizigou Cu Deposit in Zhongtiao Mountain and Its Implication [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1405-1418.
[8] Ren Junping, Wang Jie, Liu Xiaoyang, He Fuqing, He Shengfei, Zuo Libo, Xu Kangkang, Gong Penghui, Sun Kai, Liu Yu. Research Status and Prospecting Potential of Copper Polymetallic Deposits in Central-South Africa [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1083-1103.
[9] Liu Chen, Sun Jinggui, Qiu Dianming, Gu Alei, Han Jilong, Sun Fanting, Yang Mei, Feng Yangyang. Genesis and Geological Significance of Mesozoic Volcanic Rocks in Xiaomoerke, Northern Slope of Greater Khingan Range: Hf Isotopic Geochemistry and Zircon U-Pb Chronology [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1138-1158.
[10] Zhang Jinrang, Wen Hanjie, Zou Zhichao. Ore-Forming Fluid Characteristics of the Jinman Vein-Type Copper Deposits in the Western Lanping Basin and Its Metallogenic Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 706-718.
[11] Zhang Yan, Han Runsheng, Wei Pingtang, Qiu Wenlong. Fluid Inclusion Features and Physicochemical Conditions of the Kuangshanchang Pb-Zn Deposit, Huize, Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 719-733.
[12] Shi Hongzhao, Fan Wenyu, Wang Dongbing, Wang Xianfeng, Tan Gengli. Discovery of Liquid Cryptoexplosive Breccia and Its Prospecting Significance in Pulang Porphyry Copper Polymetallic Deposit [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 751-759.
[13] Yang Qijun, Qin Ya, Wang Taishan, Zhang Qingwei. Chronology and Geochemical Characteristics of Monzogranitic Porphyry from Fozichong Ore Field in Guangxi Province and Their Geological Implication [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 760-774.
[14] Yang Mei, Sun Jinggui, Wang Zhongyu, Zhao Shifeng, Liu Chen, Feng Yangyang, Ren Zening. Petrogenesis and Geological Significance of the Alkali-Rich Granite Porphyry in the Jiawula Cu-Ag-Pb-Zn Deposit in the Western Slope of the Great Xing'an Range: Zircon U-Pb Dating and Geochemical Characteristics [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 477-496.
[15] Cao Jianjin, Li Yingkui, Liu Chang, Yuan Xueling. Research on Geogas Particles from Bingba Copper Deposit in Guanling County of Guizhou Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 95-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!