Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (2): 589-596.doi: 10.13278/j.cnki.jjuese.201702302

Previous Articles     Next Articles

Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Gradient Data

Gao Xiuhe, Huang Danian, Sun Siyuan, Yu Ping   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-07-30 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National High Technology Research and Development Program ("863" Program) of China (2014AA06A613) and the Graduate Innovation Fund of Jilin University (2016095)

Abstract: When we invert gravity gradient data to recover 3D density distributions by cokriging, the dip angle impacts the recovered results seriously. Where there is a lack of the prior information about dip angle, to obtain reasonable results we present a method to determine the angle. Keeping the parameters same in cokriging, we introduce some different angles, then according to the prior information, only zero or positive density contrast is chosen. The standard deviation of the residuals between the observed and predicted data changes with the angle changing. The evaluated angle of this method is the corresponding angle to the minimum standard. In this paper, we choose four typical dipping dike models with the dip angle of 0°, 45°, 90°, 135° respectively. The vertical component Tzz of the gravity gradient data is inverted to test the valid of the method, and it shows the correct dip angles of the dipping dike. This result makes cokriging can be applied in more conditions that the dip angle is unavailable.

Key words: cokriging, 3D inversion, gravity gradient data, dipping dike

CLC Number: 

  • P631.1
[1] 袁园,黄大年,余青露,等. 全张量重力梯度数据误差分析及补偿[J].吉林大学学报(地球科学版),2014, 44(3):1003-1011. Yuan Yuan, Huang Danian, Yu Qinglu, et al.Error Analysis and Compensation of Full Tensor Gravity Gradiometer Measurements[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):1003-1011.
[2] Geng M, Huang D, Yang Q, et al. 3D Inversion of Air-borne Gravity-Gradiometry Data Using Cokriging[J]. Geophysics, 2014, 79(4), G37-G47.
[3] Asli M, Marcotte D, Chouteau M. Direct Inversion of Gravity Data by Cokriging[C]//Kleingeld W, Krige D. Proceedings of the 6th International Geostatistics Congress. 2000:64-73.
[4] Gloaguen E, Marcotte D, Chouteau M, et al. Borehole Radar Velocity Inversion Using Cokriging and Cosimulation[J]. Journal of Applied Geophysics,2005, 57(4), 242-259.
[5] Shamsipour P, Chouteau M, Marcotte D. 3D Stochastic Inversion of Magnetic Data[J]. Journal of Applied Geophysics, 2011, 73(4), 336-347.
[6] Shamsipour P, Marcotte D, Chouteau M, Rivest M, et al. 3D Stochastic Gravity Inversion Using Nonstationary Covariances[J]. Geophysics, 2013, 78(2),G15-G24.
[7] Shamsipour P, Marcotte D, Chouteau M, et al. 3D Stochastic Inversion of Gravity Data Using Cokriging and Cosimulation[J]. Geophysics, 2010, 75(1), I1-I10.
[8] Chasseriau P, Chouteau M. 3D Gravity Inversion Using a Model of Parameter Covariance[J]. Journal of Applied Geophysics, 2003, 52(1), 59-74.
[9] Higdon D, Swall J, Kern J. Non-Stationary Spatial Modeling[J]. Bayesian statistics, 1999, 6(1), 761-768.
[10] Paciorek C J, Schervish M J. Spatial Modelling Using a New Class of Nonstationary Covariance Functions[J]. Environmetrics, 2006, 17(5), 483-506.
[11] Hou Z, Wei X, Huang D, et al. Full Tensor Gravity Gradiometry Data Inversion:Performance Analysis of Parallel Computing Algorithms[J]. Applied Geophysics, 2015, 12(3), 292-302.
[12] Ennen C. Mapping Gas-Charged Fault Blocks Around the Vinton Salt Dome, Louisiana Using Gravity Gradiometry Data[D]. Houston:University of Houston, 2012.
[1] MENG Gui-xiang, YAN Jia-yong, LV Qing-tian, ZHANG Kun, CHEN Wei-min. The Application of Electrical Resistivity Imaging in Stone Mineral Deposits Exploration [J]. J4, 2011, 41(2): 592-599.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!