Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (4): 1198-1204.doi: 10.13278/j.cnki.jjuese.201504206
Previous Articles Next Articles
Li Yumei1,2, Luo Mingqi1,2, Pan Guoyong1,2, Tao Qianye1,2
CLC Number:
[1] Garland J L, Mills A L. Classification and Characte-rization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Tilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.[2] 吴才武, 赵兰坡. 土壤微生物多样性的研究方法[J]. 中国农学通报, 2011, 27(11): 231-235. Wu Caiwu, Zhao Lanpo.Technologies on Soil Microbiology Diversity[J]. Chinese Agricultural Science Bulletin, 2011, 27(11): 231-235.[3] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报:地球科学版, 2015, 45(2): 573-583. Su Xiaosi, Meng Xiangfei, Zhang Wenjing, et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 573-583.[4] Li S H, Liu K X, Liao Z W. Method for Simplification of Characteristic Carbon Sources for Biolog Analysis of Soil Microbial Community and Its Application[J]. Scientia Agricultura Sinica, 2010, 43(3): 523-528.[5] Myers R T, Zak D R, White D C, et al. Landscape-Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems[J]. Soil Science Society of America Journal, 2001, 65(2): 359-367.[6] Garland J L. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization[J]. Soil Biology and Biochemistry, 1996, 28(2): 213-221.[7] Garland J L. Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.[8] De Fede K L, Panaccione D G, Sexstone A J. Characterization of Dilution Enrichment Cultures Obtained from Size-Fractionated Soil Bacteria by BIOLOGTM Community-Level Physiological Profiles and Restriction Analysis of 16Sr RNA Genes[J]. Soil Biology and Biochemistry, 2001, 33(11): 1555-1562.[9] De Fede K L, Sexstone A J. Differential Response of Size-Fractionated Soil Bacteria in BIOLOG® Microtitre Plates[J]. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.[10] 金剑, 王光华, 陈雪丽, 等. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J]. 大豆科学, 2007, 26(4): 565-570. Jin Jian, Wang Guanghua, Chen Xueli, et al. Analysis of Microbial Community Functional Diversity in Rhizosphere of Different Soybean Genotypes R1 Stage Using Biolog-ECO Method[J]. Soybean Science,2007, 26(4): 565-570.[11] Zak J C, Willig M R, Moorhead D L, et al. Functional Diversity of Microbial Communities: A Quantitative Approach[J]. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.[12] Schutter M E, Sandeno J M, Dick R P. Seasonal, Soil Type, and Alternative Management Influences on Microbial Communities of Vegetable Cropping Systems[J]. Biology and Fertility of Soils, 2001, 34(6): 397-410.[13] 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 759-765.[14] 郑华, 欧阳志云, 王效科, 等. 不同森林恢复类型对土壤微生物群落的影响[J]. 应用生态学报,2004,15(11): 2019-2024. Zheng Hua, Ouyang Zhiyun, Wang Xiaoke, et al. Effects of Forest Restoration Patterns on Soil Microbial Communities[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2019-2024.[15] 董立国, 蒋齐, 蔡进军, 等. 基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析[J]. 干旱区研究, 2011, 28(4): 630-637. Dong Liguo, Jiang Qi, Cai Jinjun, et al. Anaysis on Functional Diversity of Edaphon Communities in Medicago Sativa Fields of Different Growth Years Based on Biolog-ECO Plates[J]. Arid Zone Research, 2011, 28(4): 630-637.[16] 岳冰冰, 李鑫, 张会慧, 等. 连作对黑龙江烤烟土壤微生物功能多样性的影响[J]. 土壤, 2013, 45(1): 116-119. Yue Bingbing, Li Xin, Zhang Huihui, et al. Soil Microbial Diversity and Community Structure Under Continuous Tobacco Cropping[J]. Soil, 2013, 45(1): 116-119.[17] Williams M A, Rice C W. Seven Years of Enhanced Water Availability Influences the Physiological, Structural, and Functional Attributes of a Soil Microbial Community[J]. Applied Soil Ecology, 2007, 35(3): 535-545.[18] Kersters I,Van Vooren L,Verschuere L,et al.Utility of the Biolog System for the Characterization of Heterotrophic Microbial Communities[J]. Systematic and Applied Microbiology, 1997, 20(3): 439-447.[19] Choi K H, Dobbs F C. Comparison of Two Kinds of Biolog Microplates (GN and ECO) in Their Ability to Distinguish Among Aquatic Microbial Communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213.[20] Guckert J B, Carr G J, Johnson T D, et al. Community Analysis by Biolog: Curve Integration for Statistical Analysis of Activated Sludge Microbial Habitats[J]. Journal of Microbiological Methods, 1996, 27(2): 183-197.[21] Kaiser S K, Guckert J B, Gledhill D W. Comparison of Activated Sludge Microbial Communities Using BiologTM Microplates[J]. Water Science and Technology, 1998, 37(4): 57-63.[22] Garland J L, Mills A L, Young J S. Relative Effectiveness of Kinetic Analysis vs Single Point Readings for Classifying Environmental Samples Based on Community-Level Physiological Profiles (CLPP)[J]. Soil Biology and Biochemistry, 2001, 33(7): 1059-1066.[23] Engelen B, Meinken K, Von Wintzingerode F, et al. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures[J]. Applied and Environmental Microbiology, 1998, 64(8): 2814-2821.[24] Franklin R B, Garland J L, Bolster C H, et al. Impact of Dilution on Microbial Community Structure and Functional Potential: Comparison of Numerical Simulations and Batch Culture Experiments[J]. Applied and Environmental Microbiology, 2001, 67(2): 702-712.[25] Gomez E, Garland J, Conti M. Reproducibility in the Response of Soil Bacterial Community-Level Physiological Profiles from a Land Use Intensification Gradient[J]. Applied Soil Ecology, 2004, 26(1): 21-30.[26] Calbrix R, Laval K, Barray S. Analysis of the Potential Functional Diversity of the Bacterial Community in Soil: A Reproducible Procedure Using Sole-Carbon-Source Utilization Profiles[J]. European Journal of Soil Biology, 2005, 41(1): 11-20.[27] 郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41(3): 456-461. Zheng Hua, Ouyang Zhiyun, Fang Zhiguo, et al. Application of Biolog to Study on Soil Microbial Community Functional Diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456-461.[28] Preston-Mafham J, Boddy L, Randerson P F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles:A Critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14.[29] Warcup J. The Soil-Plate Method for Isolation of Fungi from Soil[J]. Nature, 1950, 166: 117-118.[30] Warcup J. Isolation of Fungi from Hyphae Present in Soil[J]. Nature, 1955, 175: 953-954.[31] Verschuere L, Fievez V, Van Vooren L, et al. The Contribution of Individual Populations to the Biolog Pattern of Model Microbial Communities[J]. FEMS Microbiology Ecology, 1997, 24(4): 353-362.[32] 郑华, 欧阳志云, 赵同谦, 等. 不同森林恢复类型对土壤生物学特性的影响[J]. 应用与环境生物学报, 2006, 12(1): 36-43. Zheng Hua, Ouyang Zhiyun, Zhao Tongqian, et al. Effect of Different Forest Restoration Approaches on Soil Biological Properties[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1): 36-43.[33] Classen A T, Boyle S I, Haskins K E, et al. Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temperature Influences on Contrasting Soils[J]. FEMS Microbiology Ecology, 2003, 44(3): 319-328.[34] 杨永华, 姚键, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23-25. Yang Yonghua, Yao Jian, Hua Xiaomei. Effect of Pesticide Pollution Against Functional Microbial Diversity in Soil[J]. Journal of Microbiology, 2000, 20(2): 23-25.[35] 张万儒, 许本彤, 杨承栋, 等. 山地森林土壤枯枝落叶层结构和功能研究[J]. 土壤学报, 1990, 27(2): 121-131. Zhang Wanru, Xu Bentong, Yang Chengdong, et al. Studies on Structure and Function of Forest Floors of Mountain Forest Soils[J]. Acta Pedologica Sinica, 1990, 27(2): 121-131.[36] 莫江明, 布朗, 孔国辉, 等. 鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J]. 植物生态学报, 1996,20(6): 534-542. Mo Jiangming, Bu Lang, Kong Guohui, et al. Litter Decomposition and Its Nutrient Dynamics of a Pine Forest in Dinghushan Biosphere Reserve[J]. Acta Phytoecologica Sinica, 1996,20(6): 534-542.[37] Ribeiro C, Madeira M, Araújo M C. Decomposition and Nutrient Release from Leaf Litter of Eucalyptus Globulus Grown Under Different Water and Nutrient Regimes[J]. Forest Ecology and Management, 2002, 171(1): 31-41.[38] Moretto A S, Distel R A. Decomposition of and Nutrient Dynamics in Leaf Litter and Roots of Poa Pigularis and Stipa Gyneriodes[J]. Journal of Arid Environments, 2003, 55(3): 503-514. |
[1] | Zhang Haiyan, Peng Tongtong, Wen Yujuan, Gao Simeng, Yang Yuesuo. Microbial Diversity of Mineral Spring and Its Geological and Environmental Controls in Yaoquan Mountain, Wuda-Lianchi of NE China [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 815-826. |
[2] | Su Xiaosi, Meng Xiangfei, Zhang Wenjing, Shi Xufei, He Haiyang. Change of the Groundwater Microbial Community During Artificial Recharge Process [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 573-583. |
[3] | YANG Yue-suo, LEI Yu-de, DU Xin-qiang, HAN Jian-chao, CAO Yu-qing. When Groundwater Meets DNA:Petroleum Hydrocarbon Stress vs Biodegradation [J]. J4, 2012, 42(5): 1434-1445. |
[4] | LIU Miao, CHEN Rui-yang, LI Guang-zhu, LANG Gui-lin. Simulataneous Nitrogen Removal in the Micro-Pressurized Fluidized Hybrid Biological Reactor [J]. J4, 2012, 42(3): 832-837. |
[5] | LI Yan-xia, KUANG Hong-wei. Molecular Fossils in Neoproterozoic Molar Tooth Carbonates from Liaoning and Jilin Provinces,China and Discussion on the Evolution of Early Life [J]. J4, 2012, 42(1): 136-143. |
[6] | SUN Yu-jiao, CHEN Cheng, DING Ai-zhong, CHENG Li-rong. Response of Biological Nitrogen Fixation to Eutrophic Water in Guanting Reservoir [J]. J4, 2011, 41(4): 1179-1185. |
[7] | SONG Zhi-wei, CHENG Xiao-xia, QIAO Yan-yun, PAN Yu, LUO Ke-ji. Influence of Seed Sludge on the Reactivation of Aerobic Sludge Granular After Storage [J]. J4, 2011, 41(3): 873-878. |
[8] | MA Hui-qiang, ZHANG Lan-ying, LI Shuang, LIU Peng, DENG Hai-jing. Quantity and Community Diversity of Functional Microbes in Biobarrier Remediating of Diesel Contaminated Groundwater [J]. J4, 2011, 41(3): 819-825. |
[9] | CHEN Tao, LUO Wei, ZHANG Feng-jun, XU Long, ZHANG Guo-li. Application of Modified Vermiculite as Fillings to Biological Fluidized Bed in Low C/N Wastewater Treatment [J]. J4, 2010, 40(2): 394-398. |
[10] | LIU Peng, ZHANG Lan-ying, LIU Ying-ying, LIU Na, LIU Feng, LIU Hong, CUI Zhe, XU Guo-xin. Pharmaceutical Wastewater Treatment and Its Biological Phase in Combination with Biological Technology [J]. J4, 2010, 40(1): 169-175. |
[11] | ZOU Dong-lei, WANG Hong-yan, YANG Jin-ling, ZHANG Chun-li, ZHANG Guang-ming, ZHANG Si-xiang. Study on the Treatment of Acrylonitrile Wastewater by Fenton Reagent, Micro-electrolysis and Biological Contact Oxidation Process [J]. J4, 2007, 37(4): 793-0796. |
[12] | XU Wen-feng,LI Gui-rong,TANG Jie. Research on Carbon Resource on Denitrification Rate for Anoxic Biological Filter [J]. J4, 2007, 37(1): 139-0143. |
[13] | GAO Yuqiao1, LIU Li, LIAO Qian-jin, SUN Xiao-ming, TENG Yun. Geochemical Characteristics and Origin of Oil and Its Source Rocks in the ShallowMiddle Level:A Case Study of Tangjiahe Oil Field [J]. J4, 2006, 36(04): 535-542. |
[14] | JIANG Nan, MA Xiao-fan, WANG He-li. Effects of RTD on NH4-N Removal of Inner Loop ThreePhase Biological Fluidized Bed Reactor [J]. J4, 2006, 36(04): 605-608. |
[15] | ZOU Dong-lei,YUAN Jing-min, ZHAO Xiao-bo, YUAN Wen-shuang, YANG Zhong-ping. Treatment of Synthetic Dying Wastewater with Immobilized Biological Activated Carbon [J]. J4, 2006, 36(04): 613-615. |
|