Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (4): 1231-1259.doi: 10.13278/j.cnki.jjuese.201604303
Previous Articles Next Articles
Sun Jianguo
CLC Number:
1] Born M, Wolf E. Principles of Optics[M]. 6th ed. New York: Pergamon Press, 1980.[2] Bowman J J, Senior T B A, Uslenghi P L E. Electromagnetic and Acoustic Scattering by Simple Shapes[M]. Amsterdam: North-Holland, 1969. [3] Felsen L B, Marcuvitz. Radiation and Scattering of Waves[M]. Englewood Cliffs: Prentice-Hall, 1973.[4] Hecht E. Optics. Beijing[M]. [S.l.]: Higher Education Press, 2005. [5] Ishimaru A. Electromagnetic Waves Propagation, Radiation, and Scattering[M]. Englewood Cliffs: Prentice-Hall, 1991.[6] Kline M, Kay I W. Electromagnetic Theory and Geometrical Optics[M]. New York: Interscience, 1965.[7] Kravtsov Yu A, Orlov Yu I. Geometrical Optics of Inhomogeneous Media[M]. Berlin: Springer-Verlag, 1990.[8] Mcnamara D A, Pistorius C W I, Malherbe J A G. Introduction to the Uniform Geometrical Theory of Diffraction[M]. Norwood: Artech House, 1990.[9] Born M, Wolf E. 光学原理:上、下[M]. 7版. 北京:电子工业出版社,2006. Born M, Wolf E,Principles of Optics: Volumes 1 and 2[M]. 7th ed. Beijing:Publishing House of Electronics Industry,2006.[10] ?ervený V. Seismic Ray Theory[M]. Cambridge: Cambridge University Press, 2001.[11] 李永俊. 电磁理论的高频方法[M]. 武汉:武汉大学出版社,1999. Li Yongjun. High-Frequency Methods of Electromagnetic Theory[M]. Wuhan: Wuhan University Press, 1999.[12] 汪茂光. 几何绕射理论[M]. 2版. 西安:西安电子科技大学出版社,1994. Wang Maoguang. Geometrical Theory of Diffraction[M]. Xi'an: Xi Dian University Press, 1994.[13] Coates R T, Chapman C H. Generalized Born Scattering of Elastic Waves in 3-D Media[J]. Geophysical Journal International, 1991, 107: 231-263.[14] Senior T B A, Uslenghi P L E. Experimental Detection of the Edge-Diffracted Cone[J]. Proceedings of the IEEE, 1972,60(11): 1448.[15] Luneburg R K. Mathematical Theory of Optics[M]. Berkley: University of California Press, 1964.[16] Aki K, Richards P G. Quantitative Seismology Theory and Methods: Volume 1 and 2[M]. San Francisco: W H Freeman and Co,1980.[17] Keller J B. Geometrical Acoustics: I: The Theory of Weak Shock Waves[J]. Journal of Applied Physics, 1954, 25(8): 116-130.[18] 长春地质学院,成都地质学院,武汉地质学院合编. 地震勘探:原理和方法[M]. 北京:地质出版社,1980. Compiled By Changchun College of Geology, Chengdu College of Geology, and Wuhan College of Geology. Seismic Exploration: Principles and Methods[M]. Beijing: Geological Publishing House, 1980. [19] Keller J B.Geometrical Theory of Diffraction[J]. Jo-urnal of Optical Society of America, 1962, 52: 116-130.[20] Karal F G, Keller J B, Elastic Wave Propagation in Homogeneous and Inhomogeneous Media[J]. Journal of Acoustic Society of American, 1959, 3: 694-705.[21] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. Roberts and Company Publishers, 2005.[22] Hill R. Prestack Gaussian-Beam Depth Migration[J]. Geophysics, 2001, 66(4): 1240-1250.[23] Chew W C.Waves and Fields in Inhomogeneous Media[M]. New York: Van Nostrand Reinhold, 1990.[24] Devaney A J.Geophysical Diffraction Tomography[J]. IEEE Transactions on Geosciences and Remote Sensing, 1984, GE-22:3-13. [25] Stratton J A. Electromagnetic Theory[M]. [S. l. ]: Mcgraw-Hill Book Company, 1941.[26] 孙建国. 声波散射数值模拟的两种新方案[J]. 吉林大学学报(地球科学版),2006,36(5):863-868. Sun Jianguo.Two New Schemes for Numerical Mo-deling of Acoustic Scattering[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(5):863-868.[27] Zhdanov M S, Dmitriev V I, Fang S, et al. Quasia-nalytical Approximations and Series in Electromagnetic Modeling[J]. Geophysics, 2000, 65: 1746-1757.[28] Zhdanov M S, Fang S. Three-Dimensional Quasi-Linear Electromagnetic Modeling and Inversion[M]//Oristaglio M, Spies B. Three-Dimensional Electromagnetics. Tulsa: Society of Exploration Geophysicists, 1999: 233-255.[29] Zhdanov M S, Fang S, Hurs'An G. Electromagnetic Inversion Using Quasi-Linear Approximation[J]. Geophysics, 2000, 65: 1501-1513.[30] Zhdanov M S, Tartaras E. Three-Dimensional Inversion of Multitransmitter Electromagnetic Data Based on the Localized Quasilinear Approximation[J]. Geophysical Journal International, 2002, 148: 506-519.[31] Beylkin G. Imaging of Discontinuities in the Inverse Scattering Problem by Inversion of a Causal Generalized Radon Transform[J]. Journal of Mathematical Physics, 1985, 26: 99-108.[32] Beylkin G. Mathematical Theory for Seismic Migration and Spatial Resolution[M]// Worthington M H. Deconvolution and Inversion. Oxford: Blackwell Scientific Publications, 1987, 291-304.[33] 仇庆玖,陈恕行,是嘉鸿,等. 傅里叶积分算子及其应用[M]. 北京:科学出版社,1985. Qiu Qingjiu, Chen Shuxing, Shi Jiahong, et al. The Fourier Integral Operator and Its Applications[M]. Beijing: Science Press, 1985.[34] Bleistein N, Gray S H. An Extension of the Born Inversion Method to a Depth Dependent Reference Profile[J]. Geophysical Prospecting, 1985, 33: 999-1022.[35] Bleistein N. On the Imaging of Reflectors in the Earth[J]. Geophysics, 1987,52: 931-942.[36] Bleistein N, Cohen J K, Hagin F G. Two and One-Half Dimensional Born Inversion with an Arbitrary Reference[J]. Geophysics, 1987, 52: 26-36.[37] Bleistein N,Cohen J K, Stockwell J W,Mathematics of Multidimensional Seismic Imaging Migration, and Inversion[M]. New York: Springer-Verlag,2001.[38] LambarÉG. Sterotomography[J]. Geophysics, 2003, 73(5): VE25-VE34.[39] Schleicher J, Tygel M, Hubral P. Seismic True-Amplitude Imaging[M]. SEG, 2007. [40] Wapenaar C P A, Berkhout A J. Elastic Wave Field Extrapolation[M]. Amsterdam: Elsevier, 1989.[41] Zhdanov M S.Integral Transforms in Geophysics[M]. Berlin: Springer, 1988.[42] Virieux J, Operto S. An Overview of Full-Waveform Inversion in Exploration Geophysics[J]. Geophysics, 2009, 74(6): WCC127-WCC152.[43] Etgen J, Gray S H, Zhang Y. An Overview of Depth Imaging in Exploration Geophysics[J]. Geophysics, 2009, 74(6): WCA5-WCA17.[44] Thierry P G, Lambaré P, Podvin, et al. 3-D Preserved Amplitude Prestack Depth Migration on a Workstation[J]. Geophysics, 1999, 64: 222-229.[45] Thierry P, Operto S, Lambar G. Fast 2D Ray-Born Inversion/Migration in Complex Media[J]. Geophysics, 1999, 64: 62-181.[46] Schuster G T. Reverse-Time Migration=Generalized Diffraction Stack Migration[C]// Abstract of SEG Annual Meeting. Houston: SEG, 2009: 1280-1283.[47] Zhan G, Dai W, Zhou M, et al. Generalized Diffraction-Stack Migration and Filtering of Coherent Noise[J]. Geophysical Prospecting, 2014, 62: 1-16.[48] Sun H, Schuster G T. 2-D Wave Path Migration[J]. Geophysics, 2001, 66: 1528-1537.[49] Woodward M J. Wave-Equation Tomography[J]. Geophysics, 1992, 57: 15-26.[50] Woodward M J, Nichols D, Zdraveva O, et al. A Decade of Tomography[J]. Geophysics, 2008, 73(5): VE5-VE11.[51] Ursin B, Tygel M. Reciprocal Volume and Surface Scattering Integrals for Anisotropic Elastic Media[J]. Wave Motion, 1997, 26: 31-42.[52] Schleicher J, Tygel M, Ursin B, et al. The Kirchhoff-Helmholtz Integral for Anisotropic Elastic Media[J]. Wave Motion, 2001,34: 353-364.[53] Tygel M, Schleicher J, Hubral P. The Kirchhoff-Helmholtz Integral Pair[J].Journal of Computational Acoustics, 2001, 9(4): 1383.[54] Huang X, Sun H, Sun J. Born Modeling for Heterogeneous Media Using the Gaussian Beam Summation Based Green's Function[J]. Journal of Applied Geophysics, 2016, 131:191-201.[55] Huang X, Sun J, Sun Z. Local Algorithm for Computing Complex Travel Time Based on the Complex Eikonal Equation[J]. Physical Review E, 2016, 93(4): 043307.[56] Berkhout A J, Verschuur D J. Full Wavefield Migration, Utilizing Surface and Internal Multiple Scattering[C]// Abstract of SEG Annual Meeting. San Antonio: SEG, 2011: 3212-3215.[57] Davydenko M, Verschuur D J. Full Wavefield Migration, Using Internal Multiples for Undershooting[C]// Abstract of SEG Annual Meeting. Houston: SEG, 2013: 3741-3744.[58] Weglein A B. Multiples: Signal or Noise?[C]// Abstract of SEG Annual Meeting. Denver: SEG, 2014: 4393-4398.[59] Weglein A B. Multiples Can Be Useful (at Times) to Enhance Imaging, by Providing an Approximate Image of an Unrecorded Primary, But Its Always Primaries That Are Migrated or Imaged[C]//Abstract of SEG Annual Meeting. New Orleans: SEG, 2015:4033-4037.[60] 朗道, 栗夫席兹. 理论物理学教程:第三卷:量子力学(非相对论部分)[M]. 6版. 北京:高等教育出版社,2008. Landau L D, Lifshits E M. Theoretical Physics:III. Quantum Mechanics (Non-Relativity Theory)[M]. 6th ed. Beijing: Higher Education Press, 2008.[61] Mavko G, Mukerji T, Dvorikin J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media[M]. Cambridge: Cambridge University Press, 1998.[62] Bleistein N. Mathematical Methods for Wave Phenomena[M]. New York: Academic Press Inc, 1984.[63] James G L. Geometrical Theory of Diffraction for Electromagnetic Waves[M]. Stevenage: Peter Peregrinus Ltd, 1976.[64] Jaramillo H H, Bleistein N. The Link of Kirchhoff Migration and Demigration to Kirchhoff and Born Modeling[J]. Geophysics, 1999,64 (6): 1793-1805.[65] Courant R,Hilbert D.Methods of Mathematical Phy-sics: Volume II[M]. New York: Wiley, 2008.[66] Popov M M. A New Method of Computation of Wave Fields Using Gaussian Beams[J]. Wave Motion, 1982, 4: 85-97.[67] Popov M M, Semtchenok N M, Popov P M, et al. Depth Migration by the Gaussian Beam Summation Method[J]. Geophysics, 2010, 75(2): S81-S93.[68] Babich V M, Buldyrev V S. Short-Wavelength Diffraction Theory: Asymptotic Methods[M]. Berlin: Springer Verlag, 1990.[69] Brekhovskikh L M. Waves in Layered Media[M]. Academic Press, 1960.[70] Chapman C H, Drummond R. Body-Wave Seismograms in Inhomogeneous Media Using Maslov Asymptotic Theory[J]. Bulletin of the Seismological Society of America, 1982, 72: S277-S317.[71] White S, Norris A, Bayliss A, Burridge R. Some Remarks on the Gaussian Beam Summation Method[J]. Geophys J R Astr Soc, 1987, 89: 579-636.[72] Bortfeld R K, Geometrical Ray Theory: Rays and Traveltimes in Seismic Systems (Second-Order Approximation of the Traveltimes)[J]. Geophysics, 1989, 54: 342-349.[73] Hubral P, Schleicher J, Tygel M. Three-Dimensional Paraxial Ray Properties: I: Basic Relations[J]. Journal of Seismic Exploration, 1992, 1: 265-279.[74] Hubral P, Schleicher J, Tygel M. Three-Dimensional Paraxial Ray Properties: II: Applications[J]. Journal of Seismic Exploration, 1992, 1: 347-362.[75] Tygel M, Schleicher J, Hubral P. A Unified Approach in 3-D Seismic Reflection Imaging, Part II: Theory[J]. Geophysics, 1996, 61(3): 759-775.[76] De Hoop M V, Bleistein N. Generalized Radon Transform Inversions for Reflectivity in Anisotropic Elastic Media[J]. Inverse Problems, 1997, 13: 669-690.[77] Alkhalifah T. Gaussian Beam Depth Migration for Anisotropic Media[J]. Geophysics, 1995, 60(5): 1474-1484.[78] Albertin U, Yingst D, Kitchenside P. True Amplitude Beam Migration[C]// Abstract of SEG Annual Meeting. Denver: SEG, 2004: 398-401.[79] Gray S H, Bleistein N. True-Amplitude Gaussian-Beam Migration[J]. Geophysics, 2009, 74(2): S11-S23.[80] Han J, Wang Y, Lu J. Multi-Component Gaussian Beam Prestack Depth Migration[J]. Journal of Geophysics and Engeneering, 2013, 10: 1-10.[81] Hill N R. Prestack Gaussian-Beam Depth Migration[J]. Geophysics, 2001, 66(4): 1240-1250.[82] Protasov M I, Tcheverda V A. True Amplitude Elastic Gaussian Beam Imaging of Multicomponent Walkaway Vertical Seismic Profiling Data[J]. Geophysical Prospecting, 2012, 60: 1030-1042.[83] Protasov M I,Tcheverda V A. True Amplitude Imaging by Inverse Generalized Radon Transform Based on Gaussian Beam Decomposition of the Acoustic Green?s Function[J]. Geophysical Prospecting, 2011, 59(2): 197-209.[84] ?ervený V, Pšen?i K I. Gaussian Beams in Inhomogeneous Anisotropic Layered Structures[J]. Geophy-sical Journal International, 2010, 180: 798-812.[85] ?ervený V. Synthetic Body Wave Seismograms for Laterally Varying Layered Structures by the Gaussian Beam Method[J]. Geophys J Roy Astr Soc, 1983, 73: 389-426.[86] Frazer L N, Sen M K. Kirchhoff-Helmholtz Reflection Seismograms in a Laterally Inhomogeneous Multi-Layered Elastic Medium-I. Theory[J]. Geophys J R Astr Soc, 1985, 80: 121-147.[87] Sen M K, Frazer L N. Kirchhoff-Helmholtz Reflection Seismograms in a Laterally Inhomogeneous Multi-Layered Elastic Medium: Part II: Computations[J]. Geophys J Roy Astr Soc, 1985, 82: 415-437.[88] Sun J. The Relationship Between the First Fresnel Zone and the Normalized Geometrical Spreading Factor[J]. Geophysical Prospecting, 1996, 44(3): 351-374.[89] Sun J. 3-D Crosswell Transmissions: Paraxial Ray Solutions and Reciprocity Paradox[J]. Geophysics, 1995, 60(3): 810-820.[90] Cohen J K,Hagin F G,Bleistein N. Threedimensional Born Inversion with an Arbitrary Reference[J]. Geophysics, 1986, 51: 1552-1558.[91] Coates R T, Chapman C H. Ray Perturbation Theory and the Born Approximation[J]. Geophysical Journal International, 1990, 100: 379-392 .[92] Xu S, Lambar G. Fast Migration/Inversion with Multivalued Ray Fields: Part 1: Method, Validation Test, and Application in 2D to Marmousi[J]. Geophysics, 2004, 69(5): 1311-1319.[93] Xu S, Chauris H, Lambaré G, Noble M. Common-Angle Migration: A Strategy for Imaging Complex Media[J]. Geophysics, 2001, 66: 1877-1894.[94] Miller D, Oristaglio M, Beylkin G. A New Slant on Seismic Imaging: Migration and Integral Geometry[J]. Geophysics, 1987, 52 (7): 943-964.[95] Tygel M, Ursin B. Weak-Contrast Edge and Vertex Diffractions in Anisotropic Elastic Media[J]. Wave Motion, 1999, 29(4): 363-373.[96] Yu G X, Fu L Y. Rytov Series Approximation for Rough Surface Scattering[J]. Bulletin of the Seismological Society of America, 2012, 102(1): 42-52.[97] Marks D L. A Family of Approximations Spanning the Born and Rytov Scattering Series[J]. Optics Express, 2006, 14(19): 8837-8848.[98] Vidale J.Finite-Difference Calculation of Travel Ti-mes[J]. Bulletin of the Seismological Society of America, 1988, 78: 2062-2076.[99] Vinje V, Iversen E, Gjoystdal H. Traveltime and Amplitude Estimation Using Wavefront Construction[J]. Geophysics, 1993, 58: 1157-1166. [100] Sethian J A. A Fast Marching Level Set Method for Monotonically Advancing Fronts[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 1591-1595.[101] Sethian J A. Fast Marching Methods[J]. SIAM Review, 1999, 41: 199-235.[102] Sethian J A. Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts[J]. Journal of Computational Physics, 2001, 169: 503-555.[103] Sethian J A, Popovici A M. 3-D Traveltime Computation Using the Fast Marching Method[J]. Geophysics, 1999, 64: 516-523.[104] Rawlinson N, Sambridge M. Multiple Reflection and Transmission Phases in Complex Layered Media Using a Multistage Fast Marching Method[J]. Geophysics, 2004, 69: 1338-1350.[105] Rawlinson N, Sambridge M. Wave Front Evolution in Strongly Heterogeneous Layered Media Using the Fast Marching Method[J]. Geophysical Journal International, 2004, 156, 631-647.[106] Sun J, Sun Z, Han F. A Finite Difference Scheme for Solving the Eikonal Equation Including Surface Topography[J]. Geophysics, 2011, 76(4): T53-T63.[107] Leung S, Qian J, Burridge R. Eulerian Gaussian Beams for High-Frequency Wave Propagation[J]. Geophysics, 2007, 72(5): SM61-SM76.[108] Li S,Fomel S. Improving Wave-Equation Fidelity of Gaussian Beams by Solving the Complex Eikonal Equation[C]// Abstract of SEG Annual Meeting. San Antonio: SEG, 2011: 3829-3833.[109] ?ervený V. The Appliocation of Ray Tracing to the Propagation of Shear Waves in Complex Media[M]// Dohr G P. Seismic Share Waves. London: Geophysical Press,1985: 1-124.[110] Slaney S M, Kak A C, Larsen L E. Limitations of Imaging with First-Order Diffraction Tomography[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, MTT-32: 860-874.[111] 《数学手册》编写组. 数学手册[M]. 北京:高等教育出版社,1979. Compile Group of Handbook of Mathematics. Handbook of Mathematics[M]. Beijing: Higher Education Press,1979.[112] 石秀林,孙建国,孙辉,等. 基于Delta波包叠加的时间域深度偏移[J]. 地球物理学报,2016, 59(7):2641-2649. Shi Xiulin, Sun Jianguo, Sun Hui, et al. The Time-Domain Depth Migration by the Summation of Delta Packets[J]. Chinese Journal of Geophysics, 2016, 59(7): 2641-2649. |
[1] | Han Fuxing, Wang Ruowen, Sun Zhangqing, Gao Zhenghui. Difference and Combination of Artificial Boundary Conditions in Seismic Acoustic Numerical Simulation [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(1): 261-. |
[2] | Zhang Tao, Guo Zhiqi, Liu Cai, Liu Xiwu, Liu Yuwei, . Seismic Responses Simulation of InterSalt Shale Oil Rhythm Formation and Prediction of Layer Thickness of Thin Shale Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(1): 281-. |
[3] | Zhang Zhili, Han Fuxing, Sun Wenyan, Wang Yi, Yang Anqi, Jiao Yanyan, Xue Shigui. Surface Wave Attenuation Method Using Forward Modeling [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1890-1896. |
[4] | Zhang Junhua, Liu Zhen, Li Qin, Ren Xiongfeng, Zhao Jie. Analysis of Geophysical Characteristics and Favorable Reservoir Prediction of Red Beds in Dongying Sag [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1256-1267. |
[5] | Chen Yijun, Cheng Hao, Gong Enpu, Xue Lin. Random Noise Suppression of Seismic Data with Scale-Oriented Adaptive Threshold Based on Shearlet Transform [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1231-1242. |
[6] | Hu Bin, Wang Deli, Wang Rui, Zhu Hongyu. Adaptive Subtraction of Multiples Based on Empirical Low-Rank Representation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1243-1255. |
[7] | Tan Xiaomiao, Gao Rui, Wang Haiyan, Hou Hesheng, Li Hongqiang, Kuang Zhaoyang. Lower Crust and Moho Structure of the Eastern Segment of the Centeral Asian Orogenic Belt Revealed by Large Dynamite Shots of Deep Seismic Reflection Profile: Data Processing and Preliminary Interpretation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 898-908. |
[8] | Li Qicheng, Min Ye, He Shugeng. Discussion on Doppler Effect in Earthquakes by Wavelet Transform [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 909-918. |
[9] | Xie Fan, Wang Haiyan, Hou Hesheng, Gao Rui. Near-Surface Fine Velocity Structure in Eastern Segment of Central Asian Orogenic Belt: Revealed by First-Arrival Wave Tomography from Deep Seismic Reflection Profile [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 584-596. |
[10] | Wang Rui, Wang Deli, Hu Bin, Wang Tiexing, Wang Tong, Cui Yalong. Diffracted Multiple Elimination Based on f-x EMD Wavefield Separation [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 597-606. |
[11] | Sun Jianguo. Inversion of the Deep Sea Water Velocity by Using Munk Formulaand Seabed Reflection Travel Time [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 1-12. |
[12] | Ruan Qingfeng, Liu Cai, Liu Junqing, Zhang Yu, Zheng Guodong. Analysis of Tectonic Mechanism of Songyuan M5.1 Earthquake on May 18, 2019 [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1897-1904. |
[13] | Tian Yanan, Wang Huanyu, Wang Xin, Huang Jiajun, Zhang Qiang. Time-Spectral Entropy Method for Picking Up Fracturing Microseismic Data [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1219-1227. |
[14] | Da Shujin, Li Xuegui, Dong Hongli, Li Hanyang. Summary of Microseismic Location Methods [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1228-1239. |
[15] | Li Qicheng, Guo Lei, He Shugeng, Min Ye. An Improved t0 Method for Determining Normal Depth of Refractive Surface [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 905-910. |
|