Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (3): 694-705.doi: 10.13278/j.cnki.jjuese.201703105

Previous Articles     Next Articles

Geochemical Characteristics and Genesis of Band Iron Formation in No.2 Mining Area of Gongchangling Iron Deposit, Liaoning Province

Liu Dawei1, Wang Minghan2, Liu Suqiao3, Hu Ke1   

  1. 1. School of Marine Sciences, China University of Geosciences, Beijing 100083, China;
    2. National Geological Library of China/Geosciences Documentation Center, CGS, Beijing 100083, China;
    3. Beijing Landstar Digital Technology Company Limited, Beijing 100080, China
  • Received:2016-09-19 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Crisis Mines Replacement Resources Prospecting Project (200521036)

Abstract: In this paper, major elements, trace elements and Fe isotope composition of the magnetite quartzite, magnetite-rich ore and altered rock are presented. The average bulk compositions of the magnetite quartzite are characterized by high total Fe2O3 and SiO2, and low contents of Al2O3 and TiO2. The overall contents of trace elements and ΣREE in magnetite quartzite are very low. In the Post Archean Australian shale(PAAS) normalized REE patterns, samples display LREE depletion, distinct positive anomalies of La, Eu, Y, unobvious Ce anomalies, high Y/Ho values and heavy Fe isotope enrichment(relative to IRMM-014), which consists with the Fe isotope of oxidized and precipitated hydrothermal fluid. The geochemical charateristics of magnetite-rich ores are similar with those of the magnetite quartzite. However, ΣREE and Eu contents in the magnetite-rich ore are higher. Compared with magnetite quarterite, the magnetite-rich ore is characterized by the enrichment of light Fe isotope with larger range, which is similar to the altered rock. The magnetite quartzite is paleo-ocean chemical sedimentary rocks with devoid of terrestrial sediments, and experienced the oxidation and precipitation induced by the mixing of the submarine hydrothermal solution and the seawater. It can be deduced that the high grade iron ore was formed by the reworking of the low grade iron ore by the hydrothermal system with light Fe isotope enrichment, which resulted in Fe enrichment and Si depletion.

Key words: Fe isotope, rare earth element, genesis, Gongchanglingiron deposit, geochemistry

CLC Number: 

  • P618.31
[1] 程裕淇. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-180. Cheng Yuqi. Problems on the Henesis of the High-Grade Ore in the Pre-Sinian (Precambrian) Banded Iron Ore Deposits of the Anshan-Type in Liaoning and Shandong Provinces[J].Acta Geologica Sinica, 1957, 37(2):153-180.
[2] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[M]. 北京: 北京科学技术出版社, 1993. Wan Yusheng. The Formation and Evolvement of Ferreous Rock Series of Gongchangling, Liaoning Province [M]. Beijing: Beijing Science and Technology Press, 1993.
[3] 周世泰. 鞍山—本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 200-265. Zhou Shitai. The BIF Geology of Anshan-Benxi Area [M]. Beijing: Geological Publishing House, 1994: 200-265.
[4] 李志红, 朱祥坤, 唐索寒. 鞍山—本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J]. 岩石矿物学杂志, 2008, 27(4): 285-290. Li Zhihong, Zhu Xiangkun, Tang Suohan. Characters of Fe Isotopes and Rare Earth Elements of Banded Iron Formations from Anshan-Benxi Area: Implications for Fe Source[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 285-290.
[5] 陈光远, 黎美华, 汪雪芳, 等. 弓长岭铁矿成因矿物学专辑[J]. 矿物岩石, 1984, 4(2): 1-241. Chen Guangyuan, Li Meihua, Wang Xuefang, et al. Genetic Mineralogy of Gongchangling Iron Mine[J]. Minerals and Rocks, 1984, 4(2): 1-241.
[6] 董申保, 张秋生, 李树勋. 辽宁半岛前震旦纪混合岩化成矿作用[M]. 长春: 长春地质学院出版社, 1972. Dong Shenbao, Zhang Qiusheng, Li Shuxun. The Migmatizationg Mineralization in Pre-Sinian (Precambrian), Liaodong Peninsula[M]. Changchun: Changchun College of Geology Publishing House, 1972.
[7] 李绍柄. 鞍山式铁矿富磁铁矿矿床的成因[C]//中国科学院富铁矿科研论文集编辑组. 富铁科研论文集. 北京: 科学技术文献出版社, 1978: 134-139. Li Shaobing. Origin of Magnetite-Rich Deposits in Anshan-Type Iron Ore[C]//Proceedings Editor, Chinese Academy of Rich Iron Ore Research Group. Proceedings of Rich Iron Ore Research. Beijing: Science and Technology Literature Publishing House, 1978: 134-139.
[8] 李曙光, 支霞臣, 陈江峰, 等. 鞍山前寒武纪条带状含铁建造中石墨的成因[J]. 地球化学, 1983(2): 162-169. Li Shuguang, Zhi Xiachen, Chen Jiangfeng, et al. Origin of Graphites in Early Precambrian Banded Iron Formation in Anshan, China[J]. Geochimica, 1983(2):162-169.
[9] 王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. Wang Yue, Zhu Xiangkun. Fe Isotope Systematics and Its Implications in Ore Deposit Geology[J]. Acta Petrologica Sinica, 2012, 28 (11) : 3638-3654.
[10] 赵斌, 李统锦. 鞍山弓长岭富磁铁矿床的形成机制和物理化学条件研究[J]. 地球化学, 1980(4): 333-344. Zhao Bin, Li Tongjin. A Preliminary Study on the Mechanism and Physicochemical Conditions of Formation of Gongchangling Rich Iron Deposit[J]. Geochimica, 1980(4): 333-344.
[11] 刘军, 靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80-88. Liu Jun, Ji Shuyun. Genesis Study of Magnetite-Rich Ore in Gongchangling Iron Deposit, Liaoning[J]. Geosciece, 2010, 24(1): 80-88.
[12] 李厚民, 刘明军, 李立兴, 等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报, 2014, 30(5):1205-1217. Li Houmin, Liu Mingjun, Li Lixing, et al. SHRIMP U-Pb Geochronology of Zircons From the Garnet-Rich Altered Rocks in the Mining Area II of the Gongchangling Iron Deposit: Constraints on the Ages of the High-Grade Iron Deposit[J]. Acta Petrologica Sinica, 2014, 30(5): 1205-1217.
[13] 朱祥坤, 李志红, 赵新苗, 等. 铁同位素的MC-ICP-MS 测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志,2008, 27(4): 263-272. Zhu Xiangkun, Li Zhihong, Zhao Xinmiao, et al.High-Precision Measurements of Fe Isotopes Using MC-ICP-MS and Fe Isotope Compositions of Geological Reference Materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 263-272.
[14] Sun S S, McDonough W F. Chemical and Isotopic Systemtics of Oceanic Basalts:Implications of Mantle Composition and Processes[C]//Saunders A D, NorryM J. Magmatism in the Ocean Basins. London:Geological Sociey Special Publication, 1989, 42:313-345.
[15] McLennan S B. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes[C]//Lipin B R,Mckay G A. Geochemistry and Mineralogy of Rare Earth Elements. Washington: Mineralogical Society of America, 1989: 169-200.
[16] Planavsky N, Bekker A, Rouxel O J, et al. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition[J]. Geochimica et Cosmochimica Acta, 2010, 74: 6387-6405.
[17] 李志红, 朱祥坤, 唐索寒. 鞍山本溪地区条带状铁矿的Fe 同位素特征及其对成矿机理和地球早期海洋环境的制约[J]. 岩石学报, 2012, 28(11): 3645-3658. Li Zhihong, Zhu Xiangkun, Tang Suohan. Fe Isotope Compositions of Banded Iron Formation from Anshan-Benxi Area: Constraints on the Formation Mechanism and Archean Ocean Environment[J]. Acta Petrologica Sinica, 2012, 28(11) : 3645-3658.
[18] Dymek R F, Klein C. Chemistr, Petrology andy Origin of Banded Iron Formation Lithologies from the 3 800 Ma Isua Supracrustal Belt, West Greenland[J]. Precambrian Research, 1988, 39(4): 247-302.
[19] German C R,Elderfield H. Rare Earth Elements in Saanich Inlet, British Columbia, a Seasonally Anoxic Basin[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2561-2571.
[20] Bau M,Dulski P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79: 37-55.
[21] Kato Y, Kawakami T, Kano T, et al. Rare-Earth Element Geochemistry of Banded Iron Formations and Associated Amphibolite from the Sargur Belts, South India[J]. Southeast Asian Earth Scieces, 1996, 3(14): 161-164.
[22] Mloszewska A M, Pecoits E, Cates N L, et al. The Composition of Earth's Oldest Iron Formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada)[J]. Earth and Planetary Science Letters, 2012(317/318): 331-342.
[23] Bau M, Dulski P. Comparing Yttrium and Rare Ea-rths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour During Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[24] Alibo D S,Nozaki Y. Rare Earth Elements in Sea-water: Particle Association, Shale-Normalization and Ce Oxidation[J].Geochimica et Cosmochimica Acta, 1999, 63(3): 363-372.
[25] Bolhar R, Kamber B S, Moorbath S, et al. Chara-cterisation of Early Archaean Chemical Sediments by Trace Element Signatures[J]. Earth and Planetary Science Letters, 2004, 222: 43-60.
[26] Garrels R M, Perry E A, Mackenzie F T. Genesis of Precambrian Iron-Formations and the Development of Atmospheric Oxygen[J]. Economic Geology, 1973, 68(7): 1173-1179.
[27] Konhauser K O, Hamade T, Raiswell R, et al.Could Bacteria Have Formed the Precambrian Banded Iron Formations?[J]. Geology, 2002, 30: 1079-1082.
[28] Johannson J M, Davis J L, Scherneck H G, et al. Continuous GPS Measurements of Postglacial Adjustment in Fennoscandia 1. Geodetic Results[J]. Journal of Geophysical Research: Part B: Solid Earth, 2002, 107 (B8) :2157.
[29] Beard B L,Johnson C M. Fe Isotope Variations in Themodern and Ancient Earth and Other Planetary Bodies[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 319-357.
[30] Johnson C M,Beard B L. Fe Isotopes: An Emerging Techniques for Understanding Modern and Ancient Biogeochemical Cycles[J]. GSA Today, 2006, 16 (11): 4-10.
[31] 刘素巧. 辽宁弓长岭条带状铁建造磁铁富矿成因探讨:基于Fe同位素研究[D]. 北京: 中国地质大学, 2011. Liu Suqiao. Discussion on the Genesis of Magnetite-Rich Ore in Gongchangling, Liaoning Province: Evidence from the Iron Stable Isotope[D]. Beijing; China University of Geosciences, 2011.
[32] 刘明军. 辽宁弓长岭沉积变质型铁矿热液改造作用及其成矿意义[D]. 北京: 中国地质大学, 2013. Liu Mingjun. Hydrothermal Metasomatism and Its Metallogenic Significance of the Gongchangling Iron Deposit, Liaoning, China[D]. Beijing: China University of Geosciences, 2013.
[33] 陈随海, 韩润生, 申屠良义,等. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721. Chen Suihai, Han Runsheng, Shentu Liangyi, et al. Alteration Zoning and Geochemical Element Migration in Alteration Rock of Zhaotong Lead-Zinc Deposit in Northeastern Yunnan Mineralization Concentration Area[J]. Journal of Jilin Universitiy (Earth Science Edition), 2016, 46(3): 711-721.
[1] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[2] Lin Miruo, Cao Yingchang, Xi Kelai, Wang Jian, Chen Hong, Wu Junjun. Characteristics and Controlling Factors of Permian Reservoirs in Eastern Slope of Fukang Sag [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 991-1007.
[3] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[4] Li Xiangwen, Zhang Zhiguo, Wang Keyong, Sun Jiapeng, Yang Jibo, Yang He. Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1071-1084.
[5] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105-1120.
[6] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135-1153.
[7] Wang Chaoyang, Meng En, Li Zhuang, Li Yanguang, Jin Mengqi. Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 587-625.
[8] Sun Haitao, Zhong Dakang, Li Yong, Mao Yakun, Yang Xianzhang. Porosity Origin and Controlling Factors of Ultra-Deep, Low Porosity and Ultra-Low Permeability Sandstone Reservoirs: A Case Study of Bashijiqike Formation in Keshen Area of Kuqa Depression, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 693-704.
[9] Qi Tianjiao, Xue Chunji, Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu(Au) Mineralization District in Zhaosu County, Xinjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 132-144.
[10] Ma Yupeng, Ren Yunsheng, HaoYujie, Lai Ke, Zhao Hualei, Liu Jun. Genesis and Material Source of Scheelite of Yangbishan Iron-Tungsten Deposit in Heilongjiang, NE China [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 105-117.
[11] Sun Fanting, Liu Chen, Qiu Dianming, Lu Qian, He Yunpeng, Zhang Mingjie. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 145-164.
[12] Meng En, Wang Chaoyang, Liu Chaohui, Shi Jianrong, Li Yanguang. Geochronology, Petrogenesis and Constraints on Regional Tectonic Evolution of the Meta-Volcanic Rocks in Southeastern Liaodong Peninsula [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1589-1619.
[13] Zhang Chao, Cui Fanghua, Zhang Zhaolu, Geng Rui, Song Mingchun. Petrogenesis of Ore-Bearing Dioritic Pluton in Jinling Area in Western Shandong:Evidence from Zircon U-Pb Chronology and Petro-Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1732-1745.
[14] Shi Ke, Zhang Dayu, Ding Ning, Wang Deen, Chen Xuefeng. Geochronology, Geochemistry and Formation of Xiaoyao Rock in Southern Anhui Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1746-1762.
[15] Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Du Yang, Cui Weilong, Wang Yang. Permian Tectonic Evolution of the Middle Section of Northern Margin of the North China Plate:Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1442-1457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!