Journal of Jilin University(Earth Science Edition) ›› 2020, Vol. 50 ›› Issue (5): 1323-1339.doi: 10.13278/j.cnki.jjuese.20190280

Previous Articles     Next Articles

Petrogenesis and Metallogenic Implication of Ore-Bearing Rock Mass of Copper Polymetallic Ore Occurrence in Duorenze-Sangaka Area, Angren County, Tibet

Zhao Yayun1, Liu Xiaofeng1, Liu Yuanchao1, Ci Qiong1, Zheng Changyun1, Yang Chunsi2, Li Li3, Fu Hailong1   

  1. 1. NO.2 Geological Team, Tibet Autonomous Region Geological Mining Exploration and Development Bureau, Lhasa 850003, China;
    2. Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Geological Mining Exploration and Development Bureau, Tibet Autonomous Region, Lhasa 850000, China
  • Received:2019-12-18 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by Project of China Geological Survey (121201004000160901-47, DD20190159-1, DD20190159-2020-13) and Geological Prospecting Fund of Tibet Autonomous Region(201904, 202002)

Abstract: The magmatic rocks in Gangdise metallogenic belt are the products of collision orogeny between Indian and Eurasian plates, and are of great significance to the study of collision orogeny and mineralization. Duorenze-Sangaka area is located in the south-central part of Gangdise volcano-magmatic arc, where ore-bearing gray white medium- to fine-grained biotite granodiorite is developed. The study of petro-geochemistry, Sr-Nd isotope, and LA-ICP-MS zircon U-Pb dating of the biotite granodiorite show that its emplacement age is (49.0±0.7) Ma, in Eocene period. The biotite granodiorites are featured by high silicon (w(SiO2)=67.13%), potassium (w(K2O)=3.72%), alkali-rich (w(K2O+Na2O) =7.48%), and low MgO (1.34%, less than 3%), which belong to high potassium calc-alkaline and highly differentiated I-type granite. The Eu negative anomaly (δEu=0.70) and Sr depletion suggest plagioclase crystallization during magmatic evolution. These samples are rich in Th, U, K, Nd, Zr, Hf, and poor in Nb, Ta, Sr, Ti, P. Their whole-rock Sr-Nd isotopes ((87Sr/86Sr)i=0.705 280-0.705 530, εNd(t)=-2.2-1.6), trace elements, and element ratios reveal that they were derived from mixed crust-mantle sources. The magmatic-hydrothermal mineralization was likely caused by partial melting of lower crust, which was triggered by asthenospheric mantle upwelling through the plate break-out window during the plate fragmental subduction-post-collision of Indian and Eurasian plates. The comprehensive study shows that the porphyry-hydrothermal vein-type copper polymetallic mineralization in Duorenze-Sangaka area was resulted from the eruption of Early Eocene magmatism, which is an important part of the Cu-Au-Mo-Fe-Pb-Zn metallogenic system (52-47 Ma) related to crust-mantle granitic magmatism in Gangdise metallogenic belt.

Key words: Duorenze-Sangaka area, zircon U-Pb age, geochemistry, I-type granite, Sr-Nd isotope, slab breakoff, Gangdise metallogenic belt

CLC Number: 

  • P588.12
[1] 莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化[J]. 高校地质学报,2005,11(3):281-290. Mo Xuanxue, Dong Guochen, Zhao Zhidan, et al. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution[J]. Geological Journal of China Universities, 2005, 11(3):281-290.
[2] 潘桂堂,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J]. 岩石学报,2006,22(3):521-533. Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution[J]. Acta Petrologica Sinica, 2006,22(3):521-533.
[3] 侯增谦,王二七,莫宣学,等. 青藏高原碰撞造山与成矿作用[M]. 北京:地质出版社,2008:1-980. Hou Zengqian, Wang Erqi, Mo Xuanxue, et al. Collisional Orogeny and Metallogenesis of the Tibetan Plateau[M]. Beijing:Geological Publishing House,2008:1-980.
[4] 纪伟强,吴福元,钟孙霖,等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学:D辑:地球科学,2009,39(7):849-871. Ji Weiqiang, Wu Fuyuan, Zhong Sunlin, et al. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet[J]. Science China:Series D:Earth Science, 2009,39(7):849-871.
[5] 孟元库,许志琴,高存山,等. 藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义[J]. 岩石学报,2018,34(3):513-546. Meng Yuanku, Xu Zhiqin, Gao Cunshan, et al. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet[J]. Acta Petrologica Sinica,2018,34(3):513-546.
[6] Mo X X, Dong G C, Zhao Z D, et al. Timing of Magma Mixing in the Gangdese Magmatic Belt During the India-Asian Collision:Zircon SHRIMP U-Pb Dating[J]. Acta Geologica Sinica, 2005,79:66-76.
[7] Hou Z Q, Cook N J. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue[J]. Ore Geology Reviews, 2009,36(1/2/3):2-24.
[8] Wang R, Richards J P, Hou Z Q, et al. Extent of Underthrusting of the Indian Plate Beneath Tibet Controlled of Miocene Porphyry Cu-Mo±Au Deposits[J]. Mineralium Deposita, 2014,49:165-173.
[9] 郑有业,多吉,张刚阳,等. 西藏吉如斑岩铜矿床的发现过程及意义[J]. 矿床地质,2007,26(3):317-321. Zheng Youye, Duo Ji,Zhang Gangyang, et al. Discovery of Jiru Porphyry Copper Deposit in Tibet and Its Significance[J]. Mineral Deposits, 2007,26(3):317-321.
[10] 西藏自治区地质矿产勘查开发局区域地质调查大队. 西藏亚模地区1:50000区域地质调查报告[R]. 北京:中国地质调查局,2013:1-299. Regional Geological Survey Team, Tibet Autonomous Region Geological Mining Exploration and Development Bureau.1:50000 Regional Geological Survey Report of the Yamo Area,Tibet[R]. Beijing:China Geological Survey,2013:1-299.
[11] 赵亚云,刘晓峰,刘远超,等. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析[J]. 甘肃地质,2017,26(4):28-36. ZhaoYayun, Liu Xiaofeng, Liu Yuanchao, et al. Copper Metallogenic Condition of Cimabanshuo Area Around Zhunuo Copper Mine in Tibet[J]. Gansu Geology, 2017,26(4):28-36.
[12] 赵亚云,刘晓峰,刘波,等. 西藏罗布真矿区花岗闪长斑岩锆石U-Pb年龄、地球化学特征[J]. 西藏地质,2018,45(2):15-25. Zhao Yayun, Liu Xiaofeng, Liu Bo, et al.Geochemical Characteristics,Zircon U-Pb Age of the Granodiorite Porphyry in Luobuzhen Orefield, Tibet[J]. Tibet Geology,2018,45(2):15-25.
[13] 赵亚云,杨春四,吕金梁,等. 西藏罗布真矿区林子宗群火山岩锆石U-Pb年龄、地球化学特征及意义[J]. 现代地质,2019,33(1):73-85. Zhao Yayun, Yang Chunsi, Lü Jinliang, et al. Its Significance and Geochemical Characteristics,Zircon U-Pb Age of the Linzizong Group Volcanic Rocks in Luobuzhen Orefield, Tibet[J]. Geoscience,2019,33(1):73-85.
[14] 赵亚云,张树明,汤琳,等. 龙首山中段芨岭花岗岩体Sr-Nd-Pb同位素特征及意义[J]. 地球科学,2016,41(6):1016-1031. Zhao Yayun, Zhang Shuming, Tang Lin,et al. Sr-Nd-Pb Isotopic Characteristics and Its Geological Significance of the Jiling Grantic Pluton in the Middle Longshou Mountains Areas[J]. Earth Science,2016,41(6):1016-1031.
[15] Liu Y S, Hu Z C, Gao S,et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008,257:34-43.
[16] Ludwig K R. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publication,2003,4:1-71.
[17] 姚晓峰,唐菊兴,李志军,等. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义:来自Hf同位素特征的指示[J]. 吉林大学学报(地球科学版),2012,42(增刊2):188-198. Yao Xiaofeng, Tang Juxing, Li Zhijun, et al. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and It's Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet:Implication from Hf Isotope Characteristics[J]. Journal of Jilin University(Earth Science Edition),2012,42(Sup.2):188-198.
[18] 史长义,鄢明才,迟清华,等. 中国花岗岩类化学元素丰度[M]. 北京:地质出版社,2008:1-124. Shi Changyi, Yan Mingcai, Chi Qinghua, et al. China Granite Chemical Element Abundance[M]. Beijing:Geological Publishing House,2008:1-124.
[19] Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms:Recommendations of the International Union of Geological Sciences,Sub-Commission on the Systematics of Igneous Rocks[M]. Cambridge:Cambridge University Press,2002.
[20] Peccerillo A,Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58(1):63-81.
[21] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin,1989,101(5):635-643.
[22] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins.London:Geological Society Special Publication,1989:313-345.
[23] 赵亚云,刘晓峰,刘远超,等. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征[J]. 地球科学,2018,43(12):4551-4565. Zhao Yayun, Liu Xiaofeng, Liu Yuanchao,et al. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area,in Tibet[J]. Earth Science,2018,43(12):4551-4565.
[24] Miller R G,O'Nions R K. Source of Precambrian Chemical and Clastic Sediments[J]. Nature,1985,314:325-330.
[25] Bouvier A, Vervoort J D, Patchett P J. Lu-Hf and Sm-Nd Istope Composition of CHUR:Constraints from Unequilibrated Chlndrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth and Plannetary Science Letters,2008,273(1/2):48-57.
[26] Jahn B M,Condie K C. Volution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites[J]. Geochimica et Cosmochimica Acta,1995,59(11):2239-2258.
[27] 邢凤鸣. 锶同位素初始比值在划分花岗岩成因类型上的应用探讨[J]. 岩石学报,1987,2(5):75-80. Xing Fengming.On the Application of Initial Strontium Isotope Rations in Division of Granitic Types[J]. Acta Petrologica Sinica,1987,2(5):75-80.
[28] Depaolo D J. Isotope Studies of Processes in Mafic Magma Chambers:I:Kiglapait Intrusion, Labrador[J]. Journal of Petrology,1985,26:925-951.
[29] Depaolo D J, Perry F V, Baldridge W S. Crustal Versus Mantle Sources of Granitic Magmas:A Two-Parameter Model Based on Nd Isotopic Studies[J]. Royal Society of Edinburgh Transactions:Earth Sciences,1992,83:439-446.
[30] Mo X X, Hou Z Q, Niu Y L, et al. Mantle Contributions to Crustal Thickening During Continental Collision Evidence from Cenozoic Igneous Rocks in Southern Tibet[J]. Lithos,2007,96(1/2):225-242.
[31] 吴福元,林强,江博明. 造山带造山后花岗岩的同位素特点与地壳生长意义[J]. 科学通报,1997,42(20):2188-2192. Wu Fuyuan, Lin Qiang, Jahn Boming.Northern China Orogenic Belt Post-Tectonic of Granitic Isotope Characteristics and Crustal Growth's Significance[J]. Chinese Science Bulletin,1997,42(20):2188-2192.
[32] Zhu D C, Wang Q, Cawood P A, et al.Raising the Gangdese Mountains in Southern Tibet[J]. Journal of Geoophysical Research (Solid Earth),2017,122(1):214-223.
[33] 张泽明,丁慧霞,董昕,等. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲[J]. 地球科学,2019,44(5):1602-1620. Zhang Zeming, Ding Huixia, Dong Xin, et al. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent[J]. Earth Science, 2019,44(5):1602-1620.
[34] 秦克章,李光明,赵俊兴,等. 西藏首例独立钼矿:冈底斯沙让大型斑岩钼矿的发现及其意义[J]. 中国地质,2008,35(6):1101-1112. Qin Kezhang, Li Guangming, Zhao Junxing, et al. Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo deposit in Tibet and Its Significance[J]. Geology in China,2008,35(6):1101-1112.
[35] 唐菊兴,陈毓川,王登红,等. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704. Tang Juxing, Chen Yuchuan, Wang Denghong, et al. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbo'gyamda County, Tibet and Its Geological Significance[J]. Acta Geologica Sinica, 2009,83(5):698-704.
[36] Zheng Y C, Fu Q, Hou Z Q, et al. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet[J]. Ore Geology Reviews,2015,70:510-532.
[37] 张刚阳,郑有业,龚福志,等. 西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J]. 岩石学报,2008,24(3):473-479. Zhang Gangyang, Zheng Youye, Gong Fuzhi, et al. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process[J]. Acta Petrologica Sinica, 2008,24(3):473-479.
[38] 于玉帅,杨竹森,多吉,等. 西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄、Hf同位素与稀土元素证据[J]. 矿床地质,2011,30(3):420-435. Yu Yushuai, Yang Zhusen, Duo Ji, et al. Age and Petrogenesis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:Evidence from Zircon SHRIMP U-Pb Dating, Hf Isotope and REE[J]. Mineral Deposits, 2011,30(3):420-435.
[39] Jiang Z Q, Wang Q, Derek A, et al. Zircon U-Pb Geochronology and Geochemistry of Late Cretaceous-Early Eocene Granodiorites in the Southern Gangdese Batholith of Tibet:Petrogenesis and Implications for Geodynamics and Cu±Au±Mo Mineralization[J]. International Geology Review,2015,57(3):373-392.
[40] Mo X X, Dong G C, Zhao Z D, et al. Mantle Input to the Crust in Southern Gangdese,Tibet,During the Cenozoic:Zircon Hf Isotopic Evidence[J]. Journal of Earth Science, 2009,20(2):241-249.
[41] Mo X X, Niu Y L, Dong G C, et al. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J]. Chemical Geology,2008,250(1/2/3/4):49-67.
[42] Lee H Y, Chung S L, Lo C H. Eocene Neotethyan Slab Break off in Southern Tibet Inferred from the Linzizong Volcanic Record[J]. Tectonophysics,2009:477:20-37.
[43] 赵亚云. 龙首山中段古生代花岗岩岩石学、地球化学特征及地质意义[D]. 南昌:东华理工大学,2016:1-79. Zhao Yayun. Petrology, Geochemistry Characteristics and Geological Significance of Paleozoic Granites in Middle Longshou Moutains,Gansu Province[D]. Nanchang:East China University of Technology,2016:1-79.
[44] 陈希节,许志琴,孟元库,等. 冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 岩石学报,2014,30(8):2253-2268. Chen Xijie, Xu Zhiqin, Meng Yuanku, et al. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes[J]. Acta Petrologica Sinica,2014,30(8):2253-2268.
[45] Alther R, Holl A, Hegner E. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges(France) and Northern Schwarzwald(Germany)[J]. Lithos,2000,50:51-73.
[46] 郭春丽,曾令森,高利娥,等. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究[J]. 地质学报,2017,91(8):1796-1817. Guo Chunli, Zeng Lingsen, Gao Li'e,et al. Highly Fractionated Grantitic Minerals and Whole-Rock Geochemistry Prospecting Markers in Hetian, Fujian Province[J]. Acta Geologica Sinica,2017, 91(8):1796-1817.
[47] 李奋其,李益多,张士贞, 等. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质,2016, 43(1):142-152. Li Fenqi, Li Yiduo, Zhang Shizhen, et al. The 90 Ma Island-Arc Type Plutonism in the Subduction-Accretionary Complex in Langxian County Area,Tibet[J]. Geology in China,2016,43(1):142-152.
[48] Hou Z Q, Yang Z M, Lu Y J, et al. A Genetic Linkage Between Subduction and Collision-Related Porphyry Cu Deposits in Continental Collision Zones[J]. Geology, 2015,43(3):247-250.
[49] 凌洪飞,沈渭洲,孙涛,等. 广东省22个燕山期花岗岩的源区特征及成因:元素及Nd-Sr同位素研究[J]. 岩石学报,2006,22(12):2687-2703. Ling Hongfei, Shen Weizhou, Sun Tao, et al. Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province:Study of Element and Nd-Sr Isotopes[J]. Acta Petrologica Sinica,2006,22(12):2687-2703.
[50] Pearce J A, Harris N B W,Tindle A G. Trace Element Discrimination Diagram for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956-983.
[51] Zhu D C, Wang Q, Zhao Z D. Magmatic Record of India-Asia Collision[R].Beijing:Scientific Reports, 2015:14289.
[52] Leech M L, Singh S, Jain A K, et al. The Onset of India-Asia Continental Collision:Early,Steep Subduction Required by the Timing of HUP Metamorphism in the Western Himalaya[J]. Earth and Planetary Science Letters,2005,234:83-97.
[1] Fan Yuanyuan, Liu Yunhua, Yu Xiaofei, Zhao Qiang, Li Xiaoyan, Deng Nan, Ma Yuanhao. Geochemical Characteristics and Genesis of Jinkengzi Gold Deposit in Wudu Area, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1404-1417.
[2] Sun Hairui, Lü Zhicheng, Yu Xiaofei, Li Yongsheng, Du Zezhong, Lü Xin, Gong Fanying. Late Paleozoic Tectonic Evolution of Beishan Orogenic Belt: Chronology and Geochemistry Constraints of Early Permian Syenogranitic Porphyry Dyke in Liuyuan Area, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1433-1449.
[3] He Genwen, Lu Siming, Peng Linlin, Yu Changqi, Li Wei, Liu Cuihui. Geochemistry, Geochronology and Genesis of Granites in Shihuoshan Pyrite Polymetallic Ore Area, South Jiangxi Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1491-1504.
[4] Yu Zhendong, Xiang Xinkui, Tan Rong, Sun Deming, Zhang Si. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Coarse Muscovite Granite in Pingmiao Mining Area of Dahutang, North Jiangxi [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1505-1517.
[5] Xiong Guangqiang, Liu Min, Zhang Da, Wang Zhong. Geochemistry and Geochronology of Gabbro in Diyanmiao Ophiolite Belt, West Ujimqin Banner, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1599-1614.
[6] Yu Changsheng, Yang Yanchen, Han Shijiong, Yang Kunlin, Song Zhaoyang, Zhang Yihang, Wang Wang. Petrogenesis of Moyite from Xiagalaiaoyi Pb-Zn Deposit in Great Xing’an Range and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1042-1058.
[7] Ren Wenkai, Wang Shengyun, Chen Libiao, Wu Shaofeng, Zhang Haiqing. LA-ICP-MS Zicon U-Pb Geochronology, Geochemistry and Geological Significance of Granodiorites in Lancai Area, Tongren, Qinghai [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1059-1074.
[8] Ren Yunsheng, Liu Xiaohe, Shang Qingqing, Chen Cong, Yang Qun, Hao Yujie, Sun Zhenming. Geochemistry and Geochronology of Ore-Bearing Formation in Jinan BIF-Type Iron Deposit in Helong Area, Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 800-814.
[9] Zhang Jian, Zhang Haihua, Chen Shuwang, Zheng Yuejuan, Zhang Dejun, Su Fei, Huang Xin. Geochemical Characteristics and Geological Significance of Upper Permian Linxi Formation in Northern Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 518-530.
[10] Chen Huijun, Yu Hongbin, Ma Yongfei, Chen Jingsheng, Qian Cheng, Liu Shiwei, Cui Tianri, Zhong Hui. Zircon U-Pb Age, Petrological Geochemistry and Tectonic Implication of Alkaline Granitein South-Eastern Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 531-541.
[11] Meng Qingtao, Li Jinguo, Liu Zhaojun, Hu Fei, Xu Chuan. Organic Geochemical Characteristics and Depositional Environment of Oil Shale of Eocene of Paleocene Youganwo Formation in Yangjiao Mining Area of Maoming Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 356-367.
[12] Song Yu, Liu Zhaojun, Achim Bechtel, Xu Yinbo, Meng Qingtao, Sun Pingchang, Zhu Kai. Controlling Factors of Oil Shale and Coal Oil Yield in Lower Cretaceous Muling Formation in Laoheishan Basin [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 378-391.
[13] He Zhonghua, Wang Qizhi, Wang Qiang. Geochemistry and Zircon U-Pb Ages of Clastic Rocks of Zhesi Formation in Suolun Region, Great Xing’an Range: Constraints on Origins of Sediment Provenance [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 405-424.
[14] Xu Jinjun, Li Ning, Jin Qiang, Liu Jihua, Lou Da, Teng Jiancheng. Geochemical Characteristics and Source Analysis of Carboniferous-Permian Condensate Oil and Gas in Huanghua Depression [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(2): 644-652.
[15] Zhang Shuyi. Geochronology and Geochemistry of Volcanic Rocks in Tamulangou Formation from New Barag Right Banner, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 129-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fu Jiangang, Li Guangming, Wang Genhou, Zhang Linkui, Liang Wei, Zhang Xiaoqiong, Jiao Yanjie, Dong Suiliang. Syntectonic Skarn Characteristics and Mineralization Age of Associated Be-W-Sn Rare Metal Deposit in Cuonadong Dome, Southern Tibet, China[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1304 -1322 .
[2] Li Hongliang, Li Guangming, Ding Jun, Zhang Zhi, Qing Chengshi, Fu Jiangang, Ling Chen, Liu Yuqi. Genesis of Zhaxikang Pb-Zn Polymetallic Deposit in Southern Tibet: Evidence from in Situ S Isotopes of Sulfides[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1289 -1303 .