Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (3): 792-803.doi: 10.13278/j.cnki.jjuese.20200318

Previous Articles     Next Articles

Microscopic Interpretation of Water Content Influence on Shear Strength of Dispersive Soil

Chen Jianping, Liu Jing, Wang Qing, Han Yan, Wang Jiaqi, Li Xinghua   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2020-12-25 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Support by the National Natural Science Foundation of China (41820104001,41627801) and the Department of Water Resources of Jilin Province (126002-2020-0001)

Abstract: As a special water-sensitive soil, dispersive soil has the characteristics of collapse and disintegration when encountering water, which isnot conducive to water conservancy projects and geotechnical engineering. In order to enhance the research on the mechanical strength as well as the influential mechanism of dispersive soil, in this paper, the dispersive soil in Qian’an area in the west of Jilin Province was taken as the research object,and the remolded soil samples with different water contents (5.0%-24.0%) were tested and observed respectively by direct shear test (under vertical pressures including 50, 100, 200 and 300 kPa) and scanning electronic microscope (SEM). The results show that:1) The increase of water content led to the transformation of shear stress-shear displacement curve from strain-softening to strain-hardening, the corresponding water content in the transition zone was between 8.0% and 11.0%, and the strain-hardening occurred preferentially under higher vertical pressures. 2) With the increase of water content, the cohesion decreased as a whole with the inflection points at 17.0% and 23.0% of water content, while the internal friction angle showed a decreasing-increasing-decreasing pattern, with the inflection points at 11.0% and 17.0% of water content; It is considered that the cohesion change is affected by both salt phase state and water content, while the change of internal friction angle is affected by cohesion and viscous resistance. 3) Affected by Na+, with the increase of water content, the clay bound water film thickened rapidly, the structural units disintegrated gradually, the cementation of some particles weakened gradually, the structural units evolved from large particles into smaller ones, and the size of pores reduced. 4) A good correlation exists between the soil shear strength and main morphological parameters of the soil microstructure units obtained from the quantitative analyses on the SEM images (p<0.05), indicating that the decrease of shear strength is the macroscopic manifestation of the changes in the soil microstructure units induced by water content due to soil dispersity.

Key words: dispersive soil, water content, shear strength, microstructure

CLC Number: 

  • TU411
[1] Vakili A H, Kaedi M, Mokhberi M, et al. Treatment of Highly Dispersive Clay by Lignosulfonate Addition and Electroosmosis Application[J]. Applied Clay Science, 2018, 152: 1-8.
[2] Goodarzi A R, Salimi M.Stabilization Treatment of a Dispersive Clayey Soil Using Granulated Blast Furnace Slag and Basic Oxygen Furnace Slag[J]. Applied Clay Science, 2015, 108: 61-69.
[3] Fan H H,Kong L W.Empirical Equation for Evaluating the Dispersivity of Cohesive Soil[J]. Canadian Geotechnical Journal, 2013, 50(9): 989-994.
[4] 樊恒辉, 张路, 杨秀娟, 等.分散性土及工程应用的研究进展[J]. 水利与建筑工程学报, 2019, 17(3): 10-21. Fan Henghui, Zhang Lu, Yang Xiujuan, et al. Advances in Research and Engineering Applicaitons of Dispersive Soil[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 10-21.
[5] Bell F G, Walker D J H. A Further Examination of the Nature of Dispersive Soils in Natal, South Africa[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33: 187-199.
[6] Gutiérrez F, Desir G, Gutiérrez M.Causes of the Catastrophic Failure of an Earth Dam Built on Gypsiferous Alluvium and Dispersive Clays (Altorricón, Huesca Province, NE Spain)[J]. Environmental Geology, 2003, 43(7): 842-851.
[7] Marchuk A, Rengasamy P.Clay Behaviour in Suspension is Related to the Ionicity of Clay-Cation Bonds[J]. Applied Clay Science, 2011, 53(4): 754-759.
[8] SavaşH, Türköz M, Seyrek E, et al. Comparison of the Effect of Using Class C and F Fly Ash on the Stabilization of Dispersive Soils[J]. Arabian Journal of Geosciences, 2018, 11: 612.
[9] Vakili A H, Selamat M R B, Mohajeri P,et al. A Critical Review on Filter Design Criteria for Dispersive Base Soils[J]. Geotechnical and Geological Engineering, 2018, 36(4): 1933-1951.
[10] 赵高文, 樊恒辉, 陈华, 等.基于黏性土分散机制的分散性土化学改性研究[J]. 岩土力学, 2013, 34(增刊2): 210-213. Zhao Gaowen, Fan Henghui, Chen Hua, et al. Study of Chemical Modification of Dispersive Clay Based on Mechanism of Dispersivity of Cohesive Soil[J]. Rock and Soil Mechanics, 2013, 34(Sup. 2): 210-213.
[11] Chorom M, Regasamy P, Murray R S. Clay Dispersion as Influenced by pH and Net Particle Charge of Sodic Soils[J]. Australian Journal of Soil Research, 1994, 32(6): 1243.
[12] 赵高文, 樊恒辉, 石美, 等.基于灰色系统及验证试验的黏性土分散机理分析[J]. 岩土工程学报, 2015, 37(增刊2): 186-190. Zhao Gaowen, Fan Henghui, Shi Mei, et al. Dispersion Mechanism of Soils Revealed by Grey System Theory and Verification Tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup. 2): 186-190.
[13] 魏迎奇, 温彦锋, 蔡红, 等.分散性黏土鉴定试验的可靠性分析[J]. 中国水利水电科学研究院学报, 2007, 5(3): 186-190. Wei Yingqi, Wen Yanfeng, Cai Hong, et al. Reliability Analysis of Identification Test of Dispersive Clay[J]. Journal of China Institute of Water Resources and Hydropower Research, 2007, 5(3): 186-190.
[14] Shoghi H, Ghazavi M, Ganjian N.The Effects of Chemical Admixtures and Physical Factors on the Treatment of Dispersive Soils[J]. Arabian Journal of Geosciences, 2017, 10: 486.
[15] 于为, 马龙, 王秋丽.新疆玛纳斯河肯斯瓦特水利枢纽防渗土料分散性研究[J]. 土工基础, 2011, 25(3): 77-80,97. Yu Wei, Ma Long, Wang Qiuli. Dispersity Study on Anti-Infiltration Soil of Hydro-Junction of Kenzwat River in Manas, Xinjiang[J]. Soil Engineering and Foundation, 2011, 25(3): 77-80,97.
[16] 赵高文, 樊恒辉, 陈华, 等.蒙脱石对黏性土分散性的影响[J]. 岩土工程学报, 2013, 35(10): 1928-1932. Zhao Gaowen, Fan Henghui, Chen Hua, et al. Influence of Montmorillonite on Dispersivity of Clayey Soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1928-1932.
[17] Moravej S, Habibagahi G, Nikooee E, et al. Stabilization of Dispersive Soils by Means of Biological Calcite Precipitation[J]. Geoderma, 2018,315: 130-137.
[18] 杨玉婳, 唐红, 姚海林, 等.羟基铝改性分散性土的试验研究[J/OL]. 人民黄河, 2020, http://kns.cnki.net/kcms/detail/41.1128.TV.20200518.1324.070.html. Yang Yuhua, Tang Hong, Yao Hailin, et al. Experimental Study on Improvement of Dispersive Soil by Hydroxyl Aluminum[J/OL]. Yellow River, 2020,http://kns.cnki.net/kcms/detail/41.1128.TV.20200518.1324.070.html..
[19] 李兴国, 许仲生.分散性土的试验鉴别和改良[J]. 岩土工程学报, 1989, 11(1): 62-66. Li Xingguo, Xu Zhongsheng. Test Identification and Improvement of Dispersive Soil[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(1): 62-66.
[20] Kertész Á, Gergely J. Gully Erosion in Hungary, Review and Case Study[J]. Procedia-Social and Behavioral Sciences, 2011, 19: 693-701.
[21] Valentin C, Poesen J,Li Y. Gully Erosion: Impacts, Factors and Control[J]. Catena, 2005, 63(2/3): 132-153.
[22] Leonard J, Richard G. Estimation of Runoff Critical Shear Stress for Soil Erosion from Soil Shear Strength[J]. Catena, 2004, 57(3): 233-249.
[23] 唐自强, 党进谦, 樊恒辉, 等.分散性土的抗剪强度特性试验研究[J]. 岩土力学, 2014, 35(2): 435-440. Tang Ziqiang, Dang Jinqian, Fan Henghui, et al. Experimental Research on Shear Strength Characteristics of Dispersive Clay[J]. Rock and Soil Mechanics, 2014, 35(2): 435-440.
[24] 蒋明镜.现代土力学研究的新视野:宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. Jiang Mingjing. New Paradigm for Modern Soil Mechanics: Geomechanics from Micro to Macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254.
[25] Frost J D, Roy N, Chen C C, et al. Quantitative Analysis of Microstructure Properties and Their Influence on Macroscale Response[J]. Ksce Journal of Civil Engineering, 2019, 23(9): 3777-3792.
[26] 常锦, 杨和平, 肖杰, 等.酸雨入渗对膨胀土抗剪强度的影响及微观试验研究[J]. 中南大学学报(自然科学版), 2019, 50(1): 206-213. Chang Jin, Yang Heping, Xiao Jie, et al. Effect of Acid Rain Infiltration on Shear Strength of Expansive Soil and Its Microscopic Test[J]. Journal of Central South University (Science and Technology), 2019, 50(1): 206-213.
[27] 高磊, 胡国辉, 杨晨, 等.玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(增刊1): 231-237. Gao Lei, Hu Guohui, Yang Chen, et al.Shear Strength Characteristics of Basalt Fiber-Reinforced Clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Sup. 1): 231-237.
[28] 高金花, 徐阳, 闫雪莲, 等.吉林省西部湖泊地带苏打盐渍土溶陷性[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1104-1111. Gao Jinhua, Xu Yang, Yan Xuelian, et al. Salt Resolving Slump of Sodic Saline Soil in the Lake Area of Western Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1104-1111.
[29] 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,1999. Standard for Geotechnial Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 1999.
[30] 张旭东, 王清, 李鹏飞, 等.乾安"泥林"土体分散性研究[J]. 东北大学学报(自然科学版), 2015, 36(11): 1643-1647. Zhang Xudong, Wang Qing, Li Pengfei, et al. Research on Soil Dispersion of Qian’an Soil Forest[J]. Journal of Northeastern University (Natural Science), 2015, 36(11): 1643-1647.
[31] 张静, 吉林省西部地区分散性季冻土的分散机理研究[D]. 长春:吉林大学, 2010. Zhang Jing. Research on the Dispersion Mechanism of the Dispersive Seasonal Frozen Soil in the Western of Jilin Province[D]. Changchun: Jilin University, 2010.
[32] 王清, 刘宇峰, 刘守伟, 等.吉林西部盐渍土多场作用下物质特性演化规律[J]. 吉林大学学报(地球科学版), 2017, 47(3): 807-817. Wang Qing, Liu Yufeng, Liu Shouwei, et al. Evolution Law of the Properties of Saline Soil in Western Jilin Province Under Multi Field Effect[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 807-817.
[33] Sherard J L, Decker R S, Ryker N L. Piping in Earth Dams of Dispersive Clay[C]//Proceedings, Specialty Conference on Performance of Earth and Earth-Supported Structures.West Lafayette: Purdue University, 1972: 589-626.
[34] 土工试验规程:SL 237—1999[S]. 北京:中国水利水电出版社,1999. Specification of Soil Test: SL 237—1999[S]. Beijing: China Water & Power Press, 1999.
[35] 王清, 王凤艳, 肖树芳.土微观结构特征的定量研究及其在工程中的应用[J]. 成都理工学院学报, 2001, 28(2): 148-153. Wang Qing, Wang Fengyan, Xiao Shufang. A Quantitative Study of the Microstructure Characteristics of Soil and Its Application to the Engineering[J]. Journal of Chengdu University of Technology, 2001, 28(2): 148-153.
[36] Liu, C, Shi B, Zhou J, et al. Quantification and Characterization of Microporosity by Image Processing, Geometric Measurement and Statistical Methods: Application on SEM Images of Clay Materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
[1] Hong Bo, Li Xi'an, Wang Li, Li Lincui. Permeability Anisotropy and Microstructure of Yan'an Q3 Loess [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1389-1397.
[2] Zhou Yang, Su Shengrui, Li Peng, Ma Hongsheng, Zhang Xiaodong. Microstructure and Mechanical Properties of Broken Phyllite [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 504-513.
[3] Hong Yong, Zhou Rong, Zheng Xiaoyu. Fast Shear Mechanical Properties of Saturated Sand Under Different Drainage Conditions [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1416-1426.
[4] Gou Fugang, Gong Xulong, Wang Guangya. Shear Strength and Failure Characteristics of Marine Soft Soil in Lianyungang [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1165-1173.
[5] Hong Yong, Che Xiaowen, Zheng Xiaoyu, Liu Peng, Zhou Rong. Fast Shear Behavior of Saturated and Dry Loess at South Plateau Landslide of Jingyang, Shaanxi [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1207-1218.
[6] Zhang Hu, Zhang Jianming, Su Kai, Liu Shiwei. Comparison Between Pressuremeter Test and Uniaxial Compression Test of Frozen Soil [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1479-1484.
[7] Feng Zhiqiang, Lin Li,Liu Yongjiang,Fu Xiugen,Pang Yanchun,Wang Xinli. Characteristics and Metallogenic Model of SEDEX Lead-Zinc Deposits in the Western Qinling Orogenic Belt: A Case Study of the Luoba Deposit in Hui County, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1799-1811.
[8] Han Aimin,Xiao Junhua,Qiao Chunyuan,Ding Changyang. Experiments on Micro and Macro Behaviors of Nanjing Xiashu Soil Uunder Triaxial Compression [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1897-1903.
[9] Dong Chong,Chen Junlin,Du Baoxia,Xu Xiaohui,He Yuli,Dai Jing,Sun Bainian. Microstructure of Two Species of Elatides Fossils from the Early Cretaceous in the Western Jiuquan Basin, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 833-844.
[10] SONG Dan, HUANG Fei, CHEN Lin, LI Guang-lu, LIN Jia-lei, LI Jian-yuan, DONG Yu, CHENG Qiu-ming, WANG Yong-qan. Microstructure of Sheet and Flake Pyrite Crystals in Hydrothermal Conditions [J]. J4, 2012, 42(4): 1084-1089.
[11] NIU Cen-cen, WANG Qing, YUAN Xiao-qing, YANG Jing, SONG Jing, WANG Ji-liang. Quantitative Research on Microstructure Features of Dredger Fill Under Seepage Flow [J]. J4, 2011, 41(4): 1104-1109.
[12] WANG Sheng-xin, CHAI Shou-xi, WANG Xiao-yan. Effect of Reinforcement Condition and Water Content on Compressive Strength and Stress-Strain of Compaction Soil with Wheat Straw [J]. J4, 2011, 41(3): 784-790.
[13] LIANG Chun, ZHENG Xi-lai, ZHANG Jun-jie, YUE Feng. Testing of Water Content in Oil-Contaminated Porous Medium [J]. J4, 2011, 41(3): 826-830.
[14] WANG Chang-ming, LIN Rong, CHEN Duo-cai, ZHANG Xian-wei, WANG Ke. Collapsible Deformation Characteristics and Its Changes in Microstructure of Loess in West of Liaoning [J]. J4, 2011, 41(2): 471-477.
[15] LENG Yi-fei, SUN You-hong, YANG Feng-xue, JIANG Long, ZHAO Yi-min. Application of Thermometric Method and Calorimetric Method in the Measurement of Unfrozen Water in Frozen Soil [J]. J4, 2011, 41(2): 478-483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Yan-zhang, CHI Bao-ming, LIU Zhong-pei. Mode of Structural Control about Groundwater Pour-in Mechanism in Xiadian Gold Deposits in Shandong Province[J]. J4, 2008, 38(2): 255 -0260 .
[2] ZHANG Yuan, LIU Lian-deng,SUN Jing-gui,CHEN Guo-hua,ZHANG Hong-xi,YAN Fu-chuan, YANG Kai-chun. Two Phase Overprinting Mineralization in Huangbuling Gold Deposit in Northwestern Jiaodong Peninsula[J]. J4, 2008, 38(1): 21 -0026 .
[3] ZHANG Yu-ling,YAO Jun,ZHAO Xiao-bo,CAO Chun-ying,ZHENG Song-zhi. Optimum Conditions of Compound Bioflocculant Producing Bacterium YL3[J]. J4, 2008, 38(5): 864 -0868 .
[4] YU Qiang, REN Zhan-li. Comparison of Geothermal Fields in the Huangling and Dongsheng Areas, Ordos Basin[J]. J4, 2008, 38(6): 933 -0936 .
[5] YANG Chun-mei, LI Hong-qi,LU Da-wei,ZHANG Fang-li,GAO Yuan,SHAO Ying-chao. The Relationship Between Rock Resistivity and Water Saturation in WaterDriveOil and OilDriveWater Process[J]. J4, 2005, 35(05): 667 -671 .
[6] CUI Ying-chun, SHI Xue-fa, LIU Ji-hua, MA Li-jie. Records of Past 70 Ma Dust Activities in Ferromanganese Crusts from Pacific Ocean[J]. J4, 2012, 42(2): 393 -399 .
[7] Gong Xiangbo, Lü Qingtian, Han Liguo,Tan Chenqing. Method of Angle-Domain Illumination Analysis on Rugged Surface[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 610 -615 .
[8] Pan Jianli. Calculation Method and Application of Soil Deformation Induced by Pipe Jacking Construction[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1458 -1465 .
[9] Chang Xiaojun, Ge Weiya, Yu Yang, Zhao Yu, Ye Longzhen, Zhang Taili, Wei Zhenlei. Mechanism and Mitigation Measures of Qishan Landslide of Yongtai in Fujian Province[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1063 -1072 .
[10] Li Yong, Chen Shijia, Yin Xiangdong, He Qingbo, Su Kaiming, Xiao Zhenglu, Qiu Wen, He Xin. Research Status, Geological Significance and Development Trend of Solid Bitumen in Reservoirs[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 732 -746 .