吉林大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (增刊): 339-0343.

• 论文 • 上一篇    下一篇

基于残余力向量和粒子群算法的结构损伤识别

于繁华1,2,刘仁云3,周春光2   

  1. 1.长春师范学院 计算机科学与技术学院, 长春 |130032;2.吉林大学 计算机科学与技术学院|长春 130012;3.长春师范学院 数学学院|长春130032
  • 收稿日期:2009-07-22 出版日期:2010-09-01 发布日期:2010-09-01
  • 通讯作者: 周春光(1947-),男,教授,博士生导师.研究方向:计算智能及应用.E-mail:cgzhou@jlu.edu.cn E-mail:cgzhou@jlu.edu.cn
  • 作者简介:于繁华(1970-),男,教授.研究方向:智能计算及应用.E-mail:ccsyyfh@163.com
  • 基金资助:

    吉林省教育厅“十一五”科学技术研究项目(吉教科合字\[2007\]第171号)

Structural damage detection based on residual force vector method and particle swarm algorithm

YU Fan-hua1,2,LIU Ren-yun3,ZHOU Chun-guang2   

  1. 1.School of Computer Science and Technology, Changchun Normal University, Changchun 130032, China|2.College of Computer Science and Technology,Jilin University,Changchun 130012,China;3.School of Mathematics, Changchun Normal University, Changchun 130032, China
  • Received:2009-07-22 Online:2010-09-01 Published:2010-09-01

摘要:

为了有效地进行结构的损伤识别,提高损伤识别过程中的抗噪能力,利用残余力向量的概念,把结构损伤识别问题转化成优化问题,并建立了适合结构损伤识别的多目标优化模型,由于该优化模型属于高维多目标优化,为提高模型的求解精度,利用所提出的改进灰色粒子群算法进行求解。悬臂梁结构损伤识别试验表明,将该方法用于结构损伤识别具有较好的效果。

关键词: 灰色粒子群算法, 残余力向量, 结构损伤识别

Abstract:

To improve the ability of structural damage detection and its noise restraining ability, damage detection was transferred into optimization problem by the concept of residual force vector. And the multiobjective model was proposed for structural damage detection. Because of its higher dimensions, the improved grey particle swarm algorithm was presented to improve the model precision. The experiment on structural damage detection of cantilever beam shows that the proposed method is efficient on damage detection.

Key words: grey particle swarm algorithm, residual force vector, structural damage detection

中图分类号: 

  • TU312
[1] 于繁华,刘寒冰 . 基于支持向量机和粒子群算法的结构损伤识别[J]. 吉林大学学报(工学版), 2008, 38(02): 434-0438.
[2] 于繁华, 刘寒冰, 谭国金 . 神经网络集成在结构损伤识别中的应用[J]. 吉林大学学报(工学版), 2007, 37(02): 438-0441.
[3] 刘仁云,张义民,于繁华 . 基于灰色粒子群算法的可靠性稳健优化设计[J]. 吉林大学学报(工学版), 2006, 36(06): 893-897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!