吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (02): 291-297.

• 论文 • 上一篇    下一篇

车速变化对吸收/压缩混合制冷循环的影响

李见波, 徐士鸣, 刘福森   

  1. 大连理工大学 能源与动力学院, 辽宁 大连 116024
  • 收稿日期:2012-02-12 出版日期:2013-03-01 发布日期:2013-03-01
  • 通讯作者: 徐士鸣(1957-),男,教授,博士生导师.研究方向:废热回收与利用.E-mail:xsming@dlut.edu.cn E-mail:xsming@dlut.edu.cn
  • 作者简介:李见波(1985-),男,博士研究生.研究方向:废热制冷.E-mail:ljb_1985@163.com
  • 基金资助:

    国家自然科学基金项目(61076022).

Influence of driving speed on absorption/compression hybrid refrigeration cycle

LI Jian-bo, XU Shi-ming, LIU Fu-sen   

  1. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2012-02-12 Online:2013-03-01 Published:2013-03-01

摘要: 通过对不同车速下客车发动机排气参数的定量分析和吸收/压缩混合制冷循环计算,确定了发生器的结构形式和换热面积,建立了发动机排气参数和发生器内工作流体的传热分布参数模型。进而分析了在不同车速下发生器负荷特性对混合制冷循环的影响。结果表明,制冷负荷为30 kW的条件下,车速大于100 km/h时,废热制冷就能满足客车冷负荷需求;车速在35~100 km/h时,废热制冷和压缩制冷联合运行才能满足客车冷负荷需求;车速低于35 km/h时,客车冷负荷完全由压缩制冷提供。

关键词: 热能工程, 排气废热, 混合制冷循环, 盘管发生器, 换热模型

Abstract: By quantitatively analyzing the exhaust gas parameters from a bus engine under different driving conditions and calculating the absorption/compression hybrid refrigeration cycle, the structure of the refrigeration generator and its heat transfer area were determined. A model with distributed parameters was built for the heat transfer between the engine exhaust gases and working fluid in the generator. The influences of the generator cooling loads on the characteristic of the hybrid refrigeration cycle were analyzed at different driving speeds. The results showed that at the condition of cooling load 30 kW, so long as the driving speed higher than 100 km/h, the waste heat absorption refrigeration sub-cycle alone can meet completely the cooling request of the bus. When the driving speeds between 35 and 100 km/h, the combination of both absorption and compression refrigeration sub-cycles can supply the sufficient cooling. When driving speeds lower than 35 km/h, the cooling of the bus was provided only by the compression refrigeration sub-cycle.

Key words: thermal energy engineering, exhaust gas waste heat, hybrid refrigeration cycle, coil generator, heat transfer model

中图分类号: 

  • TK11
[1] Talom, Hugues L, Beyene, et al. Heat recovery from automotive engine[J]. Applied Thermal Engineering, 2009, 29(2/3): 439-444.

[2] Hilali I, Soylemez M S. On the optimum sizing of exhaust gas-driven automotive absorption cooling systems[J]. International Journal of Energy Research, 2008, 32:655-660.

[3] AndréAleixo Manzela, Sérgio Morais Hanriot, Luben Cabezas-Gómez, et al.Using engine exhaust gas as energy source for an absorption refrigeration system[J].Applied Energy,2010,87:1141-1148.

[4] Shieh C C, Chang W S, Wang C C. Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller[J]. Applied Thermal Engineering, 2009, 29(10):2100-2105.

[5] Wang L W, Wang R Z, Wu J Y. Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine: choice of adsorption pair[J]. Energy Conversion and Management, 2004, 45(13):2043-2057.

[6] Borde I.Working fluids for an absorption system based on R124 (2-chloro-l,l,l,2,-tetrafluoroethane) and organic absorbents[J]. International Journal of Refrigeration, 1997, 20(4):256-266.

[7] 郭斌.发动机原理与汽车理论[M]. 北京: 清华大学出版社,2009.

[8] 刘秋颖,石磊,李胜达,等.柴油机涡轮增压器匹配程序中排气温度预测模型的研究[J].内燃机与动力装置,2011,144(2):29-34. Liu Qiu-ying, Shi Lei, Li Sheng-da,et al. The study of exhaust temperature forecasting models in turbocharging matching program of diesel engine[J].ICE & Powerplan, 2011, 144(2): 29-34.

[9] 焦其伟.大客车发动机热平衡分析与冷却水热量的利用计算.济南:山东大学能源与动力工程学院,2008. Jiao Qi-wei. The thermal balance analysis of engine in coach and calculation of cooling water utilized. Jinan: School of Energy and Power Engineering,Shandong University, 2008.

[10] 杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006.

[11] 吴业正. 小型制冷装置设计指导[M]. 北京:机械工业出版社,2011.

[12] 尾花英朗. 热交换器设计手册(上册)[M].徐中权,译. 北京:烃加工业出版社,1987.

[13] 路明,徐士鸣. 汽车尾气余热制冷循环特性[J]. 制冷技术,2010(4):10-13. Lu Ming, Xu Shi-ming. Research on the characteristics of the hybrid refrigeration cycle driven by waste heat[J]. Refrigeration Technology, 2010(4):10-13.

[14] Xu S M, Li J B, Liu F S. An investigation on the absorption-compression hybrid refrigeration cycle driven by gases and power from vehicle engines[J]. International Journal of Energy Research, 2012. http://onlinelibrary.wiley.com/doi/10.1002/er.2943/full
[1] 徐亮, 兰进, 王明森, 高建民, 李云龙. 旋度对旋转冲击射流传热特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1483-1491.
[2] 周学志, 高青, 于鸣, 赵晓文, 朱天奎. 含水层构造对抽灌水温变特性的影响[J]. 吉林大学学报(工学版), 2013, 43(01): 56-61.
[3] 江彦, 高青, 李明, 王丽华. 渗流对地下换热器能量动态蓄存控制的影响[J]. , 2012, 42(05): 1179-1184.
[4] 齐子姝, 高青, 于鸣, 刘研, 白莉. 岩土地下换热器热泵系统长期运行状况预测分析[J]. , 2012, 42(04): 877-881.
[5] 高青1,2,王丽华2,江彦2,李明1,2. 地下蓄能间歇时序影响与作用[J]. 吉林大学学报(工学版), 2011, 41(6): 1565-1570.
[6] 苏俊林,罗小金,矫振伟,黄海珍. 燃用生物质颗粒燃料锅炉的燃烧及排放特性[J]. 吉林大学学报(工学版), 2010, 40(04): 953-0958.
[7] 黄勇, 高青, 马纯强, 张磊, 玄哲浩. 道路融雪化冰过程冰层的热融特性[J]. 吉林大学学报(工学版), 2010, 40(02): 391-0396.
[8] 苏俊林, 戴文仪, 矫振伟. 玉米秸秆颗粒燃料的热工特性[J]. 吉林大学学报(工学版), 2010, 40(02): 386-0390.
[9] 江彦, 高青, 李明, 马纯强, 刘研, 黄勇. 地下蓄能热扩散和传输的能流通量描述[J]. 吉林大学学报(工学版), 2009, 39(05): 1142-1145.
[10] 于鸣,高青,乔广,李明,马纯强,江彦 . 地能利用中的蓄能时间效应
[J]. 吉林大学学报(工学版), 2009, 39(02): 321-0325.
[11] 陈华艳,苏俊林,矫振伟 . 生 物 质 型 煤 燃 烧 特 性[J]. 吉林大学学报(工学版), 2008, 38(06): 1281-1286.
[12] 苏俊林,王震坤,矫振伟 . 高效低排放气液直接混合相变换热供热装置[J]. 吉林大学学报(工学版), 2008, 38(02): 278-0282.
[13] 崔淑琴,高青,李明,江彦. 地源热泵非连续过程地下传热特性及其控制[J]. 吉林大学学报(工学版), 2006, 36(02): 172-0176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!