吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 619-625.doi: 10.7964/jdxbgxb201303011
孙万臣1, 孙士龙1, 王晓丹1, 李国良1, 赖春杰1,2
SUN Wan-chen1, SUN Shi-long1, WANG Xiao-dan1, LI Guo-liang1, LAI Chun-jie1,2
摘要: 试验研究了燃料挥发性对高压共轨柴油机微粒排放的影响,分析了不同负荷工况下微粒排放粒度分布特征.结果表明:改善燃料挥发性将使中小负荷工况核态微粒数量浓度增加,有利于降低大负荷工况微粒排放数量及质量浓度,燃料挥发性对于积聚态微粒影响较小.对于不同挥发性的燃料,核态微粒数量浓度均在当量比为0.4的中等负荷工况下最大.中小负荷工况下,对于挥发性较差的基础燃料,添加少量易挥发性成分后,核态微粒数量浓度急剧上升.但在中等负荷工况下,随添加比例的增大,挥发性进一步改善的燃料,核态微粒及总微粒数量浓度均有所降低,且积聚态微粒数量浓度变化不大.在大负荷工况下,中等挥发性的燃料(中均沸点为263 ℃)核态微粒和总微粒数量浓度最高,而挥发性好的燃料(中均沸点为244 ℃)核态微粒和总微粒数量浓度最低.
中图分类号:
[1] Morawska L, Ristovski Z, Jayaratne E R, et al. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure source[J]. Atmospheric Environment, 2008, 42(35):8113-8138.[2] Kittelson D, Arnold M, Watts W, et al. Review of Diesel Particulate Matter Sampling Methods. Minnesota: University of Minnesota, 1999.[3] 刘双喜,宁智,付娟,等. 柴油机排气微粒冷却演变特性的实验研究[J]. 环境科学,2007,28(6): 1193-1197. Liu Shuang-xi, Ning Zhi, Fu Juan, et al. Evolution characteristics of diesel particles under cooling condition[J]. Environmental Science, 2007, 28(6):1193-1197.[4] Lee K O, Zhu J, Ciatti S, et al. Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates//SAE Paper, 2003-01-3169.[5] Ryan III T W, Buckingham J, Dodge L G, et al. The effects of fuel properties on emissions from a 2.5 gm NO<em>x heavy duty diesel engine//SAE paper, 98249.[6] Lange W W. The influence of fuel properties on exhaust emissions from advanced Mercedes Benz diesel engine//SAE paper, 932685.[7] Barry E G. Heavy duty diesel engine/fuels combustion performance and emissions: a cooperative research programmed//SAE paper, 852078.[8] Gadd H M, Hall K G, Schindler D E. European programs on emissions, fuels and engine technologies (EPEFE) light duty diesel study//SAE paper, 961073.[9] 孙万臣,谭满志,陈士宝,等.燃料特性对柴油机排放微粒粒度分布的影响[J]. 汽车工程,2010,32(7):570-575. Sun Wan-chen, Tan Man-zhi, Chen Shi-bao, et al. Effects of fuel properties on particle size distribution in diesel engine emission[J]. Automotive Engineering, 2010, 32(7) :570-575.[10] 孙万臣,刘忠长,解方喜,等. 燃料挥发性对柴油机恒转速增转矩工况下燃烧及排放的影响[J].内燃机学报,2008, 26(3):226-232. Sun Wan-chen, Liu Zhong-chang, Xie Fang-xi, et al. Effect of fuel volatility on combustion and emissions of diesel engine under FSIT operations[J]. Journal of Internal Combustion Engine, 2008, 26(3):226-232.[11] 李国良,孙万臣, 谭满志,等. GTL/柴油混合燃料发动机瞬态工况下微粒排放粒度分布特征分析[J].吉林大学学报:工学版,2011,41(6):1561-1564. Li Guo-liang, Sun Wan-chen, Tan Man-zhi, et al. Effect of GTL-diesel blends fuel on particle size distribution in common-rail diesel engine transient emission[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(6):1561-1564. |
[1] | 孙万臣, 刘高, 郭亮, 杜家坤, 肖森林, 李国良. 微粒捕集器对高压共轨柴油机超细微粒捕集特性[J]. 吉林大学学报(工学版), 2016, 46(1): 133-139. |
[2] | 解方喜, 于泽洋, 刘思楠, 曹晓峰, 贾贵起, 洪伟. 喷射压力对燃油喷雾和油气混合特性的影响[J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509. |
[3] | 王丹, 刘忠长, 王忠恕, 吴楠, 刘江唯. 铁基燃油添加剂对柴油机微粒排放的影响[J]. , 2012, 42(05): 1173-1178. |
[4] | 李国良,孙万臣,谭满志,赖春杰,陈士宝,安普尊. GTL/柴油混合燃料发动机瞬态工况下微粒排放粒度分布特征[J]. 吉林大学学报(工学版), 2011, 41(6): 1559-1564. |
[5] | 田径, 韩永强, 刘忠长, 李骏, 李康. 柴油机燃油催化微粒后处理器性能与再生[J]. 吉林大学学报(工学版), 2011, 41(01): 18-0023. |
[6] | 高继东,张远军,李孟良,秦孔建,陈杰峰 . 重型柴油车实际道路排放颗粒物的粒度分布[J]. 吉林大学学报(工学版), 2008, 38(01): 37-041. |
[7] | 许允,刘忠长,姜伟,高润良 . 氧化催化转化器对降低柴油机微粒排放的影响[J]. 吉林大学学报(工学版), 2007, 37(01): 65-68. |
[8] | 田华, 葛安林, 马文星, 张作礼. 液力变矩器流场损失的分析[J]. 吉林大学学报(工学版), 2004, (4): 559-563. |
[9] | 田华, 葛安林, 马文星, 张作礼. 液力变矩器泵轮内流场的数值分析[J]. 吉林大学学报(工学版), 2004, (3): 378-382. |
|