吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 450-454.
崔崟1, 段菲2, 章毓晋2
CUI Yin1, DUAN Fei2, ZHANG Yu-jin2
摘要:
为了提高图像场景分类效果,一种有效的方法是将不同特征组合起来,以常用的SIFT特征和归一化颜色直方图(NCH)特征为例研究了不同语义层次上的组合——特征层的组合和编码层的组合以及它们的效果。在几个常用数据库上的实验结果表明,相比简单的组合特征,在特征提取后再进行组合能在降低特征维数的情况下保持分类的效果,而在编码层的特征组合能获得更高的分类准确率。这表明特征组合应尽量在较高的语义层次上进行。
中图分类号:
| [1] 章毓晋.图像工程(下册):图像理解[M].(第3版).北京:清华大学出版社,2012.[2] Oliva A,Torralba A.Modeling the shape of the scene:a holistic representation of the spatial envelope [J].IJCV,2001,42(3):145-175.[3] Sivic J,Zisserman A.Video Google:A text retrieval approach to object matching in videos [C]//Proc ICCV II,Nice,France,2003:1470-1477.[4] Li F F,Perona P.A bayesian hierarchical model for learning natural scene categories [C]//Proc CVPR,San Diego,USA,2005:524-531.[5] Bosch A,Zisserman A,Munoz X.Scene classi cation via pLSA [C]//Proc ECCV,Graz, Austria,2006:517-530.[6] Blei D,Ng A,Jordan M.Latent dirichlet allocation [J].Journal of Machine Learning Research,2003(3):993-1022.[7] Sivic J,Russell B C,Efros A A,et al.Discovering objects and their location in images [C]//Proc ICCV,Beijing,China,2005:370-377.[8] Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories [C]//Proc CVPR,New York,2006:2169-2178.[9] Yang J,Yu K,Gong Y,et al.Linear spatial pyramid matching using sparse coding for image classification [C]//Proc CVPR,2009:1794-1801.[10] Lowe D.Distinctive image features from scale-invariant key points [J].IJCV,2004,60(2):91-110.[11] Nixon M S,Aguado A S.Feature extraction and image processing [M].(2ed).Academic Press,2008.[12] Van de Sande K E A,Gevers T,Snoek C G M.Evaluation of color descriptors for objects and scene recognition [C]// Proc CVPR,Anchorage,USA,2008:1-8.[13] Van Gemert J C,Veenman C J,Smeulders A W M,et al.Visual word ambiguity [J].TPAMI,2010,32(7):1271-1283.[14] Boureau Y,Bach F,Le Cun Y,et al.Learning mid-level features for recognition [C]//Proc CVPR,2010:2559-2566.[15] Maji S,Berg A C,Malik J.Classification using intersection kernel support vector machine is efficient [C]//Proc CVPR,Anchorage,USA,2008:1-8. |
| [1] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
| [2] | 纪超, 刘慧英, 孙景峰, 贺胜, 黄民主. 基于空域和频域的图像显著区域检测[J]. 吉林大学学报(工学版), 2014, 44(01): 177-183. |
|
||