• •    

考虑侧向偏移的车辆跟驰行为建模与仿真

金盛1,徐程2,2   

  1. 1. 浙江大学建筑工程学院
    2.
  • 收稿日期:2012-12-17 修回日期:2013-05-06 发布日期:2013-06-20
  • 通讯作者: 金盛

Modeling and Simulation of Car following Behavior considering Lateral Separation

  • Received:2012-12-17 Revised:2013-05-06 Published:2013-06-20
  • Contact: Sheng JIN

摘要: 为了描述真实交通环境中车辆交错跟驰的现象,在全速度差模型基础上引入了视觉角与侧向偏移角的概念,采用侧向偏移角变化率作为衡量车辆横向运动的关键参数并建立了考虑侧向偏移的车辆跟驰模型。通过线性稳定性分析得到了新模型的稳定性条件。理论分析与数值仿真结果表明,改进模型能够有效地描述车辆交错跟驰行为对交通流稳定性的影响,侧向偏移会减少交通流稳定区间,更容易使得稳定车流形成时走时停交通流。上述结论对于改善交通流稳定性,分析车辆跟驰中的横向运动特性具有重要的理论与现实意义。

关键词: 交通运输系统工程, 跟驰模型, 视觉角, 侧向偏移

Abstract: In order to describe staggered car following behavior more actually, a novel car following model based on full velocity difference (FVD) model by incorporating the visual angle was proposed. The rate of change of the lateral separation angle is as a key parameter to describe the effect of lateral separation distance. The stability condition of the model was obtained by using the linear stability theory. Then the property of the model was investigated by theoretical analysis and numerical simulation. The results imply that the lateral separation makes the stability of the proposed model smaller and the stop and go traffic formed easily. The above findings have great practical significance to improve stability of traffic flow and to analyze car-following characteristics considering the lateral movement.

Key words: Transportation system engineering, Car following model, Visual angle, Lateral separation

[1]Pipes L A.An Operational Analysis of Traffic Dynamics[J].Journal of Applied Physics,1953,24(3):274-281 [2]Brackstone M,Mcdonald M.Car-following: a Historical Review[J].Transportation Research Part F,1999,2(4):181-196 [3]Chowdhury D,Santen L,Schadschneider A.Statistical physics of vehicular traffic and some related systems[J].Physical Report,2000,329(4):199-329 [4]Meng Q,Qu X. Estimation of Rear-end Vehicle Crash Frequencies in Urban Road Tunnels[J].Accident Analysis and Prevention,2012,48(1):254-263 [5]Qu X,Meng Q,Yuanita V,Wong Y H.Design and Implementation of a Quantitative Risk Assessment Software Tool for Singapore’s Road Tunnels[J].Expert Systems with Applications,2011,38(11):13827-13834 [6]Meng Q,Qu X,Yong K T,Wong Y H.QRA Model-Based Risk Impact Analysis of Traffic Flow in Urban Road Tunnels[J].Risk Analysis,2011,31(12):1872-1882 [7]Bando M,Hasebe K,Nakayama A,Shibata A,Sugiyama Y.Dynamical Model of Traffic Congestion and Numerical Simulation[J].Physical Review E,1995,51(2):1035-1042 [8]Helbing D,Tilch B.Generalized Force Model of Traffic Dynamics[J].Physical Review E,1998,58(1):133-138 [9]Jiang R,Wu Q S,Zhu Z J.Full Velocity Difference Model for a Car-following Theory[J].Physical Review E,2001,64(1):7101-7104 [10]Nagatani T.Stabilization and Enhancement of Traffic Flow by the Next-nearest-neighbor Interaction[J].Physical Review E,1999,60(6):6395-6401 [11]Ge,H X,Cheng R J,Li Z P.Two Velocity Difference Model for a Car Following Theory[J].Physica A,2008,387(21):5239-5245 [12]Gunay B.Car Following Theory with Lateral Discomfort[J].Transportation Research Part B,2007,41(7):722-735 [13]Jin S,Wang D H,Tao P F,Huang Zhiyi.Non-lane-based full velocity difference car following model[J].Physica A,2010,389(21):4654-4662 [14]Tang T Q,Huang H J,Gao Z Y.Stability of the Car-following Model on Two Lanes[J].Physical Review E,2005,72(6):6142-6148 [15]Andersen G J,Sauer C W.Optical Information for Car Following: The Driving by Visual Angle (DVA) Model[J].Human Factors,2007,49(5):878-896 [16]Jin S,Wang D H,Huang Z Y,Tao Pengfei. Visual Angle Model for Car Following Theory[J].Physica A,2011,390(11):1931-1940 [17]Gong H X,Liu H C,Wang B H.An Asymmetric Full Velocity Difference Car-following Model[J].Physica A,2008,387(11):2595-2602
[1] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[2] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[3] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[4] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[5] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[6] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[7] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[8] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
[9] 侯现耀, 陈学武. 基于态度的公交出行信息使用市场细分[J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[10] 王占中, 赵利英, 焦玉玲, 曹宁博. 信号交叉口自行车和行人混合交通流社会力模型[J]. 吉林大学学报(工学版), 2018, 48(1): 89-97.
[11] 邵赛, 毕军, 关伟. 基于电动汽车的动态需求车辆路径问题[J]. 吉林大学学报(工学版), 2017, 47(6): 1688-1695.
[12] 孙宗元, 方守恩. 高速公路出入口运动车辆轨迹分层聚类算法[J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[13] 宋现敏, 邓晓磊, 高铭, 曲昭伟. 基于动态反应时间的全速度差模型[J]. 吉林大学学报(工学版), 2017, 47(6): 1703-1709.
[14] 张蜇, 贾利民, 秦勇, 云婷. 对向行人流均衡反馈控制模型[J]. 吉林大学学报(工学版), 2017, 47(6): 1728-1737.
[15] 高坤, 涂辉招, 时恒, 李振飞. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!