吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 788-796.doi: 10.13229/j.cnki.jdxbgxb201503016

• • 上一篇    下一篇

腹板开孔Σ形复杂卷边槽钢轴压承载力试验

王春刚, 张壮南, 赵大千, 曹宇飞   

  1. 沈阳建筑大学 土木工程学院,沈阳 110168
  • 收稿日期:2013-10-28 出版日期:2015-05-01 发布日期:2015-05-01
  • 作者简介:王春刚(1978-),男,副教授,博士.研究方向:钢结构.
  • 基金资助:
    国家自然科学基金项目(51008200); 辽宁省高等学校优秀人才支持计划项目(LJQ2011059); 沈阳市科技计划项目(F12-277-1-31)

Experimental investigation of Σ-section channel steel with complex edge stiffeners and web holes under axial compression

WANG Chun-gang, ZHANG Zhuang-nan, ZHAO Da-qian, CAO Yu-fei   

  1. College of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
  • Received:2013-10-28 Online:2015-05-01 Published:2015-05-01

摘要: 以不同截面形式的腹板开孔薄壁钢构件轴压性能为研究对象,分别对复杂卷边槽钢、Σ形复杂卷边槽钢两种截面形式,共10根腹板开孔轴压简支柱进行了承载力试验。试验结果表明,与相同用钢量下的腹板开孔复杂卷边槽钢相比,腹板开孔Σ形复杂卷边槽钢轴压构件的承载效率可提高30%~50%。与相同条件下的不开孔构件轴压试验相比,开孔构件的破坏模式基本不变,但破坏位置多发生在孔洞附近。利用有限元软件对试验进行模拟分析,模拟结果与试验结果吻合良好。以此为基础,采用有限元模拟对比了相同截面形式下腹板开孔和不开孔轴压构件的承载效率和应力云图,结果表明,与同截面的不开孔构件相比,腹板开孔复杂卷边槽钢的承载效率平均下降6.15%,腹板开孔Σ形复杂卷边槽钢的承载效率平均下降25.57%。孔洞的存在改变了构件的应力分布情况,较大应力区域和最大应力点均出现在孔洞附近。

关键词: 土木建筑结构, 腹板开孔, Σ, 形复杂卷边槽钢, 轴心受压

Abstract: The axial bearing capacity of thin-walled steel members with web holes and different section shapes are investigated. Ten simply supported compression members with two types of complicated sections, including channels with complex edge stiffeners and web holes, channels with complex edge stiffeners and Σ type web stiffeners and web holes, were tested. Results show that the axial compression loading efficiency of the Σ-section specimens with web holes can increase about 30% to 50% compared with channels with complex edge stiffeners and web holes under the same conditions. Compared with the specimens without holes, there is no change in failure modes, but the failure positions are near to the holes. Finite Element Analysis (FEA) is carried out to simulate the compression tests. FEA results agree well with the experimental data. Based on this, the load carrying efficiency and Von Mises stress distribution of channel columns with web holes are compared with those without holes by FEA. It is shown that the carrying efficiency of Σ-section models with holes decreases by 25.7% compared with the same section models without holes, while the model of channel section with complex edge stiffeners and holes decreases by 6.15% in average. Because of the perforations on the web, the positions of the stress concentration and the maximum stress change from the webs near the mid-height of the models to the locations adjacent to the holes.

Key words: civil engineering structure, web holes, channels with complex edge stiffeners and Σ, type web stiffeners, axial compression

中图分类号: 

  • TU392.1
[1] Narayanan S, Mahendran M. Ultimate capacity of innovative cold-formed steel columns[J]. Journal of Constructional Steel Research, 2003, 59 (4): 489-508.
[2] Moen C D, Schafer B W. Experiments on cold-formed steel columns with holes[J]. Thin-Walled Structures, 2008, 46(10): 1164-1182.
[3] Moen C D, Schafer B W. Direct strength method for design of cold-formed steel columns with holes[J]. Journal of Structural Engineering, 2010, 137(5): 559-570.
[4] 姚永红, 武振宇, 成博, 等. 开孔冷弯薄壁卷边槽钢柱轴压性能的试验研究[J]. 华南理工大学学报: 自然科学版, 2011, 39(9): 61-67.
Yao Yong-hong, Wu Zhen-yu, Cheng Bo, et al. Experimental investigation into axial compressive behavior of cold-formed thin-walled steel columns with lipped channel and openings[J]. Journal of South China University of Technology(Natural Science Edition), 2011,39(9): 61-67.
[5] Yang D, Hancock G J. Compression tests of high strength steel channel columns with interaction between local and distortional buckling[J]. Journal of Structural Engineering, 2004, 130(12): 1954-1963.
[6] 姚行友,李元齐,沈祖炎. 高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能研究[J]. 建筑结构学报, 2010, 31(11): 1-9.
Yao Xing-you, Li Yuan-qi, Shen Zu-yan. Distortional buckling behavior of high-strength cold-formed thin-walled steel lipped channel columns under axial compression[J]. Journal of Building Structures, 2010, 31(11): 1-9.
[7] Galambos T V. Guide to Stability Design Criteria for Metal Structures[M]. 5th ed. New York: John Wiley and Sons, 1998.
[8] 王春刚. 单轴对称冷弯薄壁型钢受压构件稳定性能分析与试验研究[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2007.
Wang Chun-gang. Stability behavior analysis and experimental study on singly-symmetric cold-formed thin-walled steel members under compression loading[D]. Harbin: College of Civil Engineering,Harbin Institute of Technology, 2007.
[9] Kwon Y B, Hancock G J. Tests of cold-formed channels with local and distortional buckling[J]. Journal of Structural Engineering, 1992, 117(7): 1786-1803.
[10] Mulligan G P. The influence of local buckling on the structural behavior of singly-symmetric cold-formed steel columns[R]. Report No.83-1. Ithaca: Cornell University, 1983.
[11] 王春刚,张壮南,张耀春. 中间加筋复杂卷边槽钢轴心受压构件承载力试验研究[J]. 工程力学, 2013, 30(1): 221-228, 254.
Wang Chun-gang, Zhang Zhuang-nan, Zhang Yao-chun. Experimental investigation on channel columns with complex edge stiffeners and intermediate stiffeners under axial compression[J].Engineering Mechanics, 2013, 30(1): 221-228, 254.
[12] Zhang Yao-chun, Wang Chun-gang, Zhang Zhuang-nan. Tests and finite element analysis of pin-ended channel columns with inclined simple edge stiffeners[J]. Journal of Constructional Steel Research, 2007, 63(3): 383-395.
[13] 库克R D.有限元分析的概念和应用[M]. 程耿东译.北京:科学出版社,1989.
[14] Dubina D, Ungureany V. Effect of imperfections on numerical simulation of instability behaviour of cold-formed steel members[J]. Thin-Walled Structures, 2002, 40(3): 239-262.
[15] 马平. 新型截面冷弯薄壁型钢轴心受压构件稳定性能研究[D]. 沈阳: 沈阳建筑大学土木工程学院, 2012.
Ma Ping. The stability behavior of cold-formed thin-walled steel members with new cross sections under compression loading[D]. Shenyang: College of Civil Engineering,Shenyang Jianzhu University, 2012.
[1] 尼颖升, 孙启鑫, 马晔, 徐栋. 基于拉应力域的波形钢腹板组合梁承载力配筋计算[J]. 吉林大学学报(工学版), 2018, 48(1): 148-158.
[2] 张彦玲, 孙瞳, 侯忠明, 李运生. 隔板式钢-混凝土曲线组合梁弯扭性能[J]. 吉林大学学报(工学版), 2015, 45(4): 1107-1114.
[3] 李海锋,郭小农,罗永峰,高轩能. 索支撑柔性摩天轮结构抗倒塌性能分析[J]. 吉林大学学报(工学版), 2015, 45(2): 406-413.
[4] 云迪, 刘贺, 张素梅. 中承式钢管混凝土拱桥弹塑性地震时程分析[J]. 吉林大学学报(工学版), 2014, 44(6): 1633-1638.
[5] 郭俊平1, 邓宗才1, 卢海波2, 林劲松2. 预应力高强钢绞线网抗剪加固钢筋混凝土梁试验[J]. 吉林大学学报(工学版), 2014, 44(4): 968-977.
[6] 姜封国, 赵景鲁. 受火后钢筋混凝土构件的可靠性[J]. 吉林大学学报(工学版), 2013, 43(06): 1500-1503.
[7] 云迪, 刘贺, 张素梅. 大跨中承式钢管混凝土拱桥的自振特性及稳定性[J]. 吉林大学学报(工学版), 2013, 43(01): 86-91.
[8] 石永久, 杨璐, 王元清, 李秋喆. 简支深肋组合扁梁抗弯刚度[J]. 吉林大学学报(工学版), 2010, 40(06): 1550-1555.
[9] 李黎明,陈以一,李宁,蔡玉春. 外套管式冷弯方钢管与H型钢梁连接节点的抗震性能[J]. 吉林大学学报(工学版), 2010, 40(01): 67-0071.
[10] 欧阳志为,郑文忠 . 火灾下有粘结预应力混凝土简支梁板的
变形非线性分析
[J]. 吉林大学学报(工学版), 2009, 39(02): 402-0407.
[11] 蔡健,陈国栋,左志亮,吴轶 . 受压弦杆填充混凝土的带悬挑预应力矩形钢管桁架[J]. 吉林大学学报(工学版), 2009, 39(02): 393-0397.
[12] 施刚,石永久,王元清 . 运用ANSYS分析超高强度钢材钢柱整体稳定特性[J]. 吉林大学学报(工学版), 2009, 39(01): 113-118.
[13] 张素梅,云迪 . 大跨中承式钢管混凝土拱桥的横撑布置[J]. 吉林大学学报(工学版), 2009, 39(01): 108-112.
[14] 吴建营,,蔡健,,何军,陈庆军, . 双层不规则布置梁加强环式梁柱节点承载力及刚度[J]. 吉林大学学报(工学版), 2008, 38(04): 829-834.
[15] 石启印, 陆鸣,张庆宗 ,李爱群,惠卓 . 碳纤维布加固的钢筋砼吊车梁的抗弯疲劳性能[J]. 吉林大学学报(工学版), 2008, 38(01): 99-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!