吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1584-1592.doi: 10.13229/j.cnki.jdxbgxb20190272

• • 上一篇    

双面梯度多角薄壁结构的吸能特性

周俊先1(),秦睿贤1,陈秉智2()   

  1. 1. 大连交通大学 机械工程学院,辽宁 大连 116021
    2. 大连交通大学 机车车辆工程学院,辽宁 大连 116021
  • 收稿日期:2019-03-26 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 陈秉智 E-mail:zhoujunxian2013@126.com;chenbingzhi06@hotmail.com
  • 作者简介:周俊先(1990-),男,博士研究生.研究方向:车辆结构分析与现代设计方法.E-mail:zhoujunxian2013@126.com
  • 基金资助:
    国家自然科学基金项目(11272070)

Energy absorption properties of multi-corner thin-walled columns with double surface gradients

Jun-xian ZHOU1(),Rui-xian QIN1,Bing-zhi CHEN2()   

  1. 1. College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116021, China
    2. College of Locomotive and Vehicle Engineering, Dalian Jiaotong University, Dalian 116021, China
  • Received:2019-03-26 Online:2019-09-01 Published:2019-09-11
  • Contact: Bing-zhi CHEN E-mail:zhoujunxian2013@126.com;chenbingzhi06@hotmail.com

摘要:

梯度厚度和多折角设计是提升薄壁结构吸能效率的两种有效策略,将这两种策略联合,提出了具有双面梯度厚度的多角薄壁结构(包括方管和非凸多角管),并对其在轴向冲击下的力学行特性进行了理论分析,推导了该结构的平均撞击力理论模型。基于显示非线性有限元分析软件ANSYS/LS-DYNA对该结构进行了仿真实验研究,且仿真实验结果与理论预测值有较好的一致性。实验结果表明:增加折角数和提升厚度梯度均可有效提升管件的吸能效率。作为梯度厚度策略与多角薄壁结构的联合,具有双面梯度厚度的非凸多角管相比传统均匀厚度的方管在比吸能上提高148%~205%,充分展现了这种联合策略在提升薄壁结构耐撞性方面的高效性。

关键词: 薄壁结构, 轴向冲击, 梯度厚度, 能量吸收, 压溃模式

Abstract:

Graded thickness and multi-corner designs are two efficient strategies to improve the energy dissipation of thin-walled tubes. In this study, the mechanical properties of multi-corner structures (square and nonconvex multi-corner tubes) with double surface gradients subjected to axial load were theoretically and numerically studied. An analytical formulation for the mean load of these types of novel structures was derived using the super folding element theory. The theoretical predictions agreed well with the simulation results obtained using the ANSYS/LS-DYNA software. The results show that increasing the corner number and thickness gradient can improve the energy-absorption efficiency. The combination of nonconvex multi-corner structures and double-surface gradients can lead to the increase in the specific energy absorption as high as 148% to 205% when compared to a square tube with a uniform thickness. This fully demonstrates the high efficiency of this type of combination in improving the crashworthiness of thin-walled structures.

Key words: thin-walled structure, axial crushing, graded thickness, energy absorption, collapse mode

中图分类号: 

  • O342

图1

两种基本折叠单元的简化折叠机制"

图2

管件截面"

图3

双面梯度方管的截面"

图4

类型I折叠单元"

图5

仿真实验中试件的边界条件"

图6

试件的有限元模型"

图7

双面梯度试件的截面"

图8

AA6060 T4材料的拉伸应力应变曲线"

图9

试件的最终压溃形态"

图10

撞击力响应曲线"

表1

撞击响应的理论预测与数值仿真值"

试件 仿真结果 理论值E q(37): δ = 0.70 , ? D a = 1.3 修正后的理论值E q(37): δ = δ n
F ˉ n /kN F m a x /kN CFE/% SEA/(kJ·kg-1) P m /kN Error /% δ n D P m /kN Error/%
SQU(1.2,1.2) 7.81 24.93 31.32 7.53 9.27 18.69 0.75 1.2 8.32 6.53
SQU(1.3,1.1) 8.46 25.10 33.70 8.15 9.72 14.85 0.75 1.2 8.73 3.19
SQU(1.4,1.0) 9.26 25.23 36.70 8.81 10.18 9.93 0.74 1.2 9.04 2.37
SQU(1.5,0.9) 9.92 25.29 39.22 9.43 10.72 8.06 0.74 1.2 9.76 1.61
SQU(1.6,0.8) 10.42 25.41 41.00 9.91 11.16 7.10 0.74 1.2 10.16 2.49
SQU(1.7,0.7) 10.87 25.64 42.39 10.20 11.58 6.53 0.73 1.2 10.68 1.74
SQU(1.8,0.6) 11.37 25.88 43.93 10.81 12.05 5.98 0.74 1.2 10.97 3.51
NCMC12(1.2,1.2) 20.53 33.54 61.21 18.74 20.99 2.24 0.71 1.3 21.58 5.11
NCMC12(1.3,1.1) 21.68 33.77 64.19 19.51 21.69 0.01 0.70 1.3 22.62 4.33
NCMC12(1.4,1.0) 22.90 34.02 67.31 20.61 22.57 1.44 0.70 1.3 23.53 2.75
NCMC12(1.5,0.9) 24.49 33.44 73.23 21.72 23.27 4.98 0.69 1.3 24.61 0.48
NCMC12(1.6,0.8) 25.16 34.71 72.48 22.32 24.14 4.05 0.69 1.3 25.93 3.06
NCMC12(1.7,0.7) 26.35 35.09 75.09 23.04 24.95 5.31 0.68 1.3 26.78 1.63
NCMC12(1.8,0.6) 23.87 35.21 67.79 21.79 25.71 7.70 0.71 1.3 26.43 10.74
1 Lu G X , Yu T . Energy absorption of structures and materials[C]∥Woodhead Publishing Series in Metals and Surface Engineering. Cambridge: CRC Press, 2003: 385-400.
2 Abramowicz W . Thin-walled structures as impact energy absorbers[J]. Thin Wall Struct, 2003, 41(2): 91-107.
3 Abramowicz W , Jones N . Dynamic progressive buckling of circular and square tubes[J]. Int J Impact Eng, 1986, 4(4): 243-270.
4 Langseth M , Hopperstad O S . Static and dynamic axial crushing of square thin-walled aluminium extrusions[J]. Int J Impact Eng, 1996, 18(7/8): 949-968.
5 Langseth M , Hopperstad O S , Hanssen A G . Crash behaviour of thin-walled aluminium members[J]. Thin Wall Struct, 1998, 32(1): 127-150.
6 Abramowicz W , Jones N . Transition from initial global bending to progressive buckling of tubes loaded statically and dynamically[J]. Int J Impact Eng, 1997, 19(5): 415-437.
7 Wierzbicki T , Abramowicz W . On the crushing mechanics of thin-walled structures[J]. J Appl Mech, 1983, 50(4): 727-734.
8 Abramowicz W , Jones N . Dynamic axial crushing of square tubes[J]. Int J Impact Eng, 1984, 2(2): 179-208.
9 Santosa S P , Wierzbicki T , Hanssen A G , et al . Experimental and numerical studies of foam-filled sections[J]. Int J Impact Eng, 2000, 24(5): 509-534.
10 Santosa S , Wierzbicki T . Crash behavior of box columns filled with aluminum honeycomb or foam[J]. Comput Struct, 1998, 68(4): 343-367.
11 Zhang X , Cheng G . A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns[J]. Int J Impact Eng, 2007, 34(11): 1739-1752.
12 Hanssen A G , Langseth M , Hopperstad O S . Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J]. Int J Impact Eng, 2000, 24(4): 347-383.
13 Hanssen A C , Langseth M , Hopperstad O S . Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler[J]. Int J Impact Eng, 2000, 24(5): 475-507.
14 Tang Z , Liu S , Zhang Z . Energy absorption properties of non-convex multi-corner thin-walled columns[J]. Thin Wall Struct, 2012, 51: 112-120.
15 Liu S , Tong Z , Tang Z , et al . Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads[J]. Thin Wall Struct, 2015, 88: 70-81.
16 Zhang X , Huh H . Crushing analysis of polygonal columns and angle elements[J]. Int J Impact Eng, 2010, 37(4): 441-451.
17 Yamashita M , Gotoh M , Sawairi Y . Axial crush of hollow cylindrical structures with various polygonal cross-sections: numerical simulation and experiment[J]. J Mater Process Technol, 2003, 140(1-3): 59-64.
18 Godat A , Legeron F , Bazonga D . Stability investigation of local buckling behavior of tubular polygon columns under concentric compression[J]. Thin Wall Struct, 2012, 53: 131-140.
19 Zhang X , Zhang H . Experimental and numerical investigation on crush resistance of polygonal columns and angle elements[J]. Thin Wall Struct, 2012, 57: 25-36.
20 Zhang X , Wen Z , Zhang H . Axial crushing and optimal design of square tubes with graded thickness[J]. Thin Wall Struct, 2014, 84: 263-274.
21 Abramowicz W , Wierzbicki T , Axial crushing of multicorner sheet metal columns [J]. J Appl Mech Trans ASME, 1989, 56(1): 113-120.
22 Ma J , Hou D , Chen Y , et al . Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation[J]. Thin Wall Struct, 2016, 100: 38-47.
[1] 于向军, 王国强, 王继新, 唐小波, 胡季. 轮式装载机滚翻保护结构动态响应[J]. 吉林大学学报(工学版), 2010, 40(05): 1262-1267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!