吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (5): 1876-1885.doi: 10.13229/j.cnki.jdxbgxb20190484

• 通信与控制工程 • 上一篇    

浅海信道低频入射声场时空分布特性

祝令国1,2(),赵安邦1(),杨宝山2,马忠成2,3,刘文章2,吕良浩2   

  1. 1.哈尔滨工程大学 水声学院, 哈尔滨 150001
    2.大连测控技术研究所 第一研究室, 辽宁 大连 116013
    3.水下测控技术重点实验室 回声研究室, 辽宁 大连 116013
  • 收稿日期:2019-05-20 出版日期:2020-09-01 发布日期:2020-09-16
  • 通讯作者: 赵安邦 E-mail:13478663345@163.com;zhaoanbang@hrbeu.edu.cn
  • 作者简介:祝令国(1979-),男,研究员,博士.研究方向:水声工程;水声信号处理.E-mail:13478663345@163.com
  • 基金资助:
    水声对抗技术国防科技重点实验室开放基金项目(SSDKKFJJ-2018);水声技术重点实验室稳定支持课题(SSJSWDZC201802);54所新技术研究高校合作项目;声纳技术重点实验室基金项目(6142109011906)

Temporal and spatial distribution of incident sound field with low frequency in shallow water

Ling-guo ZHU1,2(),An-bang ZHAO1(),Bao-shan YANG2,Zhong-cheng MA2,3,Wen-zhang LIU2,Liang-hao LYU2   

  1. 1.College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
    2.First Research Laboratory, Dalian Scientific Test & Control Technology Institute, Dalian 116013, China
    3.Echo Research Laboratory, Science and Technology on Underwater Test and Control Laboratory, Dalian 116013, China
  • Received:2019-05-20 Online:2020-09-01 Published:2020-09-16
  • Contact: An-bang ZHAO E-mail:13478663345@163.com;zhaoanbang@hrbeu.edu.cn

摘要:

基于简正波理论,数值分析了浅海信道不同声纳距离范围内入射声场结构、波达角特性和空间相关特性。根据水中目标入射声场的接收方式建立了接收模型,开展了典型声纳频段入射声场时空分布特性海上实验。理论和实验研究表明:远程来波声场主要由低阶简正波构成,在垂直面内近似于水平入射;低频声场具有明显的时间与空间稳定性,能对入射声场进行空间预测。

关键词: 水中目标, 入射声场, 时空分布, 浅海信道

Abstract:

Based on the normal mode theory, the spatial–temporal correlation, sound field structure and DOA characteristics of the incident sound field in the range of different sonar distances in shallow water channel are numerically analyzed. The receiver model is established according to the receiving model of the underwater target’s incoming sound field. The experiment of the spatial-temporal correlation characteristics of the incoming sound field in typical sonar frequency band is carried out. Theoretical and experimental studies show that the long-range wave sound field is mainly composed of low order simple positive waves, which approximates the horizontal incident in the vertical plane. The low frequency sound field has obvious time and space stability, and can predict the incident sound field.

Key words: underwater target, incident sound field, space-time distribution, shallow water channel

中图分类号: 

  • TB567

图1

不同距离处入射声场的空间分布"

图2

距离10 km,低阶简正波总能量占比"

图3

距离30 km,低阶简正波总能量占比"

图4

距离60 km,低阶简正波总能量占比"

图5

入射声场抵达结构分析"

图6

水平纵向相关系数(1000 Hz)"

图7

垂直相关系数(1000 Hz)"

图8

水中目标入射声场等价接收模型"

图9

海上实验态势图"

图10

不同距离处的接收信号"

图11

不同孔径的水平纵向相关系数"

图12

不同孔径的垂直相关系数"

图13

入射声场的时间稳定性(不同位置)"

图14

入射声场的信号方差(不同位置)"

1 张仁和. 海洋声场的时间、频率与空间相干结构及其对阵列信号处理的影响[C/OL].[2005-01-01].
2 Guo L H, Gong Z X, Wu L X. Space and time coherence of acoustic field in shallow water[J]. Chinese Physics Letters, 2001, 18(10): 1366-1368.
3 林旺生, 梁国龙, 付进, 等. 浅海矢量声场干涉结构形成机理及试验研究[J]. 物理学报, 2013, 62(14): 265-273.
Lin Wang-sheng, Liang Guo-long, Fu-jin, et al. The mechanism of the interference structure in shallow water vector acoustic field and experimental investigation[J]. Acta Physica Sinica, 2013, 62(14): 265-273.
4 Zhang R H, Zhang S R, Xiao J Q, et al. Spatial coherence and temporal stability of the long-range sound field in shallow water[J]. Chinese Journal of Acoustic, 1984(4): 83-94.
5 宫在晓. 浅海低频声场的时空相干特性及其应用[D]. 北京: 中国科学院声学研究所, 2001.
Gong Zai-xiao. The spectial and temporal characteristics of sound field with low frequency in shallow water: research and appliction[D]. Beijing: Institute of Acoustics, Chinese Academy of Sciences, 2001.
6 舒象兰, 韩树平. 多途海洋声信道中声场相干性研究[C]∥全国声学设计与噪声振动控制工程暨配套装备学术会议, 青岛, 2010: 68-70.
7 程广利, 张敏明, 胡金华. 浅海相干声场不确定性研究[J]. 计算物理, 2013, 30(1): 105-110.
Cheng Guang-li, Zhang Min-ming, Hu Jin-hua. Uncertainty of coherent acoustic field in shallow water[J]. Chinese Journal of Computational Physics, 2013, 30(1): 105-110.
8 陈庚, 籍顺心. 菲律宾海声传播信道时空相关性变化实验[J]. 声学学报, 1994, 19(4): 266-277.
Chen Geng, Ji Shun-xin. Experiment study about correlation variation of acoustic propagation channel in philippines sea[J]. ACTA Acoustic, 1994, 19(4): 266-277.
9 Wan L, Zhou J X, Roger P H, et al. Spatial coherence measurements from low L-shape arrays in shallow water[J]. Acostical Physis, 2009, 55(3): 383-392.
10 Yang J. Spatial coherence in shallow water waveguide[D]. Atlanta: Georgia Institute of Technology, 2007.
11 毛岱山. 浅海声信道信号时间相关特性研究[J]. 海洋技术, 2006, 25(2): 67-69, 120.
Mao Dai-shan. Study on the characteristics of time-correlation in the shallow water acoustic channel[J]. Ocean Technology, 2006, 25(2): 67-69, 120.
12 孙梅, 李风华, 张仁和. 浅海声场垂直振速与水平振速相关特性及应用[J]. 声学学报, 2011, 36(2): 215-220.
Sun Mei, Li Feng-hua, Zhang Ren-he. Correlation characteristics of vertical particle velocity and horizontal particle velocity in shallow water and the application[J]. ACTA Acoustic, 2011, 36(2): 215-220.
13 王升, 马力, 郭圣明. 浅海单模入射声场目标回波特性研究[J]. 声学技术, 2015, 34(1): 18-22.
Wang Sheng, Ma Li, Guo Sheng-ming. Research on target echo characteristics ensonified by a signal mode in shallow water[J]. Technical Acoustics, 2015, 34(1): 18-22.
14 苏晓星. 浅海声场的水平纵向相关与波导不变性研究[D]. 北京: 中国科学院研究生院, 2006.
Su Xiao-xing. Longitudinal correlations and waveguide invariance of the acoustical field in shallow water[D]. Beijing: School of Graduate, Chinese Academy of Sciences, 2006.
[1] 赵安邦, 程越, 周彬, 安天思, 吕良浩. 基于参量阵正交频分复用编码的水声通信[J]. 吉林大学学报(工学版), 2016, 46(3): 979-984.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!