吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (5): 1742-1748.doi: 10.13229/j.cnki.jdxbgxb20200455

• 交通运输工程·土木工程 • 上一篇    

交通荷载下粉质黏土路基翻浆冒泥机理试验

蔡袁强1,2(),严舒豪1,曹志刚1(),李富有3   

  1. 1.浙江大学 滨海和城市岩土工程研究中心,杭州 310058
    2.浙江工业大学 建筑工程学院,杭州 310014
    3.浙江华恒交通建设监理有限公司,浙江 绍兴 312000
  • 收稿日期:2020-06-22 出版日期:2021-09-01 发布日期:2021-09-16
  • 通讯作者: 曹志刚 E-mail:caiyq@zju.edu.cn;caozhigang2011@zju.edu.cn
  • 作者简介:蔡袁强(1965-),男,教授,博士.研究方向:土动力学,软黏土力学.E-mail:caiyq@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51978611)

Experiments to investigate mechanism of mud pumping of road base on silty clay soil under cyclic loading

Yuan-qiang CAI1,2(),Shu-hao YAN1,Zhi-gang CAO1(),Fu-you LI3   

  1. 1.Research Center of Coastal and Urban Geotechnical Engineering,Zhejiang University,Hangzhou 310058,China
    2.College of Civil Engineering and Architecture,Zhejiang University of Technology,Hangzhou 310014,China
    3.Zhejiang Huaheng Traffic Construction Supervision Co. ,Ltd. ,Shaoxing 312000,China
  • Received:2020-06-22 Online:2021-09-01 Published:2021-09-16
  • Contact: Zhi-gang CAO E-mail:caiyq@zju.edu.cn;caozhigang2011@zju.edu.cn

摘要:

为研究粉质黏土路基翻浆冒泥发生规律,自主研制了一套路基翻浆冒泥模型试验装置。模型中路基层分别采用级配碎石与粉质黏土进行填筑,试验研究了交通循环荷载下路基中孔压累积、翻浆冒泥与沉降发展全过程,分析了粉质黏土地基土体成分、孔隙比等对路基翻浆冒泥的影响规律。研究表明:交通循环荷载下地基内部孔隙水压逐渐累积,当地基中有效应力为零时出现瞬态液化并发生翻浆冒泥现象。针对易发生翻浆冒泥的粉质黏土地基,试验发现黏粒含量与孔隙比是影响路基翻浆冒泥的重要参数;黏粒含量增加将使地基中孔压累积,进而发生翻浆冒泥现象;而同样黏粒含量下,地基孔隙比减小将使路基翻浆冒泥现象受到抑制。基于试验结果,在塑性指数和孔隙比坐标系下提出了地基翻浆冒泥的判别参考准则,当塑性指数与孔隙比位于该判定准则上方时,可初步判定路基易发生翻浆冒泥。本文研究可为交通荷载下道路翻浆冒泥评价与控制提供参考。

关键词: 翻浆冒泥, 细粒运移, 循环荷载, 孔隙比, 黏粒含量

Abstract:

To investigate the mechanism of mud pumping of road base on silty clay foundation, a self-made apparatus has been designed and manufactured. The subbase and subgrade were simulated by graded ballast and silty clay, respectively. A series of mud pumping tests had been conducted to investigate the development law and occurrence condition of mud pumping with different fines content and void ratio. The experiment results show that the pore water pressure accumulates under the cyclic loading. When the effective stress turns negative, the soil liquefaction occurs, which leads to the mud pumping of the road base. Furthermore, the fine content and void ratio are important parameters to mud pumping in silt clay foundation, the development of mud pumping can be aggravated by the increase of the fine content and the void ratio. A criterion including plastic index (IP ) and void ratio (e) of the foundation has been proposed to determine the occurrence of mud pumping. When above the criterion, the foundation is susceptible to mud pumping. The study can provide a reference for prediction and control of the mud pumping of road on soft soil.

Key words: mud pumping, fines migration, cyclic loading, void ratio, clay fines content

中图分类号: 

  • TU447

图1

自制试验仪器结构图"

表1

地基层粉质黏土性参数"

参数80c20s70c30s60c40s
土样构成80%高岭土20%粉土70%高岭土30%粉土60%高岭土40%粉土
比重ds2.712.652.62
塑限wP/%19.821.120.75
液限wL/%35.0433.930.87
塑性指数Ip15.2412.810.12
最优含水率wop/%20.619.921.5

图2

地基土和路基填料级配图"

表2

试验方案"

试验系列试验编号土样构成干密度ρ/(g·cm-3塑性指数IP地基层初始孔隙比e1渗透因数k/(cm·s-1路基填料 层孔隙比e2
1D-170c30s1.312.81.041.02×10-40.39
D-270c30s1.412.80.871.49×10-50.39
D-370c30s1.512.80.775.77×10-60.39
2G-180c20s1.415.20.867.22×10-60.39
G-270c30s1.412.80.871.49×10-50.39
G-360c40s1.410.10.917.81×10-50.39

图3

不同初始孔隙比土体沉降随时间变化曲线"

图4

不同初始孔隙比下累积孔隙水压随时间变化曲线"

图5

不同初始孔隙比下土样有效应力随时间变化曲线"

图6

不同初始孔隙比下土样细粒上翻高度"

表3

不同初始孔隙比下翻浆冒泥发生情况"

试验编号嵌入深度h1/mm上翻高度h2/mm翻浆 因数M地基瞬时液化是否发生翻浆
D-115.0066.331.74
D-213.3336.331.07
D-37.3319.331.03

图7

不同黏粒含量路基沉降随时间的变化"

图8

不同黏粒含量地基累积孔隙水压随时间的变化"

表4

不同黏粒含量下翻浆冒泥发生情况"

试验编号嵌入深度h1/mm上翻高度h2/mm翻浆 因数M是否瞬时液化是否发生翻浆
G-114.6745.671.22
G-213.3336.331.07
G-313.0035.671.07

图9

土样塑性指数与细粒含量关系图"

1 Alobaidi I, Hoare D. Factors affecting the pumping of fines at the subgrade subbase interface of highway pavements: a laboratory study[J]. Geosynthetics International, 1994, 1(2): 221-259.
2 Alobaidi I, Hoare D J. Mechanisms of pumping at the subgrade-subbase interface of highway pavements[J]. Geosynthetics International, 1999, 6(4):241-259.
3 Wang T F, Luo Q, Liu M, et al. Physical modeling of train-induced mud pumping in substructure beneath ballastless slab track[J]. Transportation Geotechnics, 2020, 23: 100332.
4 Shahu J T, hayashi S. Mud pumping problem in tunnels on erosive soil deposits[J]. Géotechnique, 2000, 50(4): 393-408.
5 Duong T V, Cui Y J, Tang A M, et al. Investigating the mud pumping and interlayer creation phenomena in railway sub-structure[J]. Engineering Geology, 2014, 171: 45-58.
6 Duong T V, Cui Y J, Tang A M, et al. Physical model for studying the migration of fine particles in the railway substructure[J]. Geotechnical Testing Journal, 2014, 37(5): 20130145.
7 Chawla S, Shahu J T. Reinforcement and mud-pumping benefits of geosynthetics in railway tracks: numerical analysis[J]. Geotextiles and Geomembranes, 2016, 44(3): 344-357.
8 凌建明, 陈卉, 钱劲松, 等. 湿度有限波动下非饱和黏土路基动态回弹模量[J]. 吉林大学学报: 工学版,2020, 50(2): 613-620.
Ling Jian-ming, Chen Hui, Qian Jin-song, et al, Dynamic resilient modulus for unsaturated clay soils under considering effect of limited moisture content fluctuation[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 613-620.
9 王静, 吕翔, 曲肖龙, 等. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报: 工学版, 2019, 49(3): 766-772.
Wang Jing, Lyu Xiang, Qu Xiao-long, et al. Analysis of relationship between subgrade soil shear strength and chemical and minerals component[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
10 聂如松, 冷伍明, 粟雨, 等. 基床翻浆冒泥土的物理力学性质[J]. 西南交通大学学报, 2018, 53(2): 286-295.
Nie Ru-song, Leng Wu-ming, Su Yu, et al. The physical and mechanical properties of mud pumping soils in railway subgrade bed[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 286-295.
11 冷伍明, 粟雨, 滕继东, 等. 易发生翻浆冒泥的细粒土物理状态指标分析与评判[J]. 铁道学报, 2018, 40(1): 116-122.
Leng Wu-ming, Su Yu, Teng Ji-dong, et al. Analysis and evaluation on physical characteristics of fine-grained soils prone to mud pumping[J]. Journal of the China Railway Society, 2018, 40(1): 116-122.
12 赵满庆. 裂隙土基床病害整治研究[D]. 成都: 西南交通大学土木工程学院, 2002.
Zhao Man-qing. Investigation on the disease of road base on fissured soil[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University, 2002.
13 易波. 电阻率层析成像技术在阳安铁路翻浆冒泥探测中的应用[J]. 路基工程, 2013(6): 150-155.
Yi Bo. Appliaction of resistivity tomography in detection of mud pumping along yangpingguan-ankang railway[J]. Subgrade Engineering, 2013(6): 150-155.
14 葛如生. 阳安线基床病害整治[D]. 成都: 西南交通大学土木工程学院, 2003.
Ge Ru-sheng. The treatment of disease of road base at Yang-An highway line[D]. Chengdu: College of Civil Engineering, Southwest Jiaotong University, 2003.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!