吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (12): 3006-3014.doi: 10.13229/j.cnki.jdxbgxb20210456

• 通信与控制工程 • 上一篇    下一篇

基于声参量阵的声-地震耦合探雷技术分析

王驰1,2(),罗欣宇1,王超1,姜和俊2,罗朝鹏2()   

  1. 1.上海大学 机电工程与自动化学院,上海 200444
    2.近地面探测技术重点实验室,江苏 无锡 214035
  • 收稿日期:2021-05-24 出版日期:2022-12-01 发布日期:2022-12-08
  • 通讯作者: 罗朝鹏 E-mail:wangchi@shu.edu.cn;chaopengluo59103@163.com
  • 作者简介:王驰(1982-),男,教授,博士. 研究方向:光学检测与融合传感技术. E-mail:wangchi@shu.edu.cn
  • 基金资助:
    国家自然科学基金项目(61773249);近地面探测技术重点实验室基金项目(TCGZ2020C003);上海市科技创新行动计划项目(20142200100)

Analysis of acoustic⁃to⁃seismic coupling landmine detection technology based on parametric acoustic array

Chi WANG1,2(),Xin-yu LUO1,Chao WANG1,He-jun JIANG2,Chao-peng LUO2()   

  1. 1.School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China
    2.Science and Technology on Near-surface Detection Laboratory,Wuxi 214035,China
  • Received:2021-05-24 Online:2022-12-01 Published:2022-12-08
  • Contact: Chao-peng LUO E-mail:wangchi@shu.edu.cn;chaopengluo59103@163.com

摘要:

构建了基于声参量阵的声-地震耦合探雷测试系统,研究了声参量阵在声波探雷技术中的应用方法。在论述声-地震耦合探雷理论的基础上,利用声参量阵作为声波能量源激励地表土壤振动,利用加速度计进行地表振动的检测,构建了地表振动在不同类型地雷和埋藏土壤条件下的三维特征图。实验结果显示,地雷上方土壤的声-地震耦合效率明显优于砖块等干扰物,并且受埋设地雷类型及周围土壤条件的影响,表明声参量阵可用于声波探雷工程系统的进一步研究。

关键词: 精密仪器及机械, 声波探雷, 声参量阵, 声-地震耦合, 非金属地雷

Abstract:

The acoustic-to-seismic coupling landmine detection system based on a parametric acoustic array was constructed to study the application method of the parametric acoustic array in acoustic landmine detection technology. Based on the theory of acoustic-to-seismic coupling landmine detection, the parametric acoustic array was used as an acoustic energy source to excite the surface vibration which can be detected by an accelerometer. The three-dimensional characteristic maps of surface vibration under different types of landmines and buried soil conditions were constructed. The experimental results show that the acoustic-to-seismic coupling efficiency of the soil above the landmine is obviously better than that of the bricks and other disturbances, and it is affected by the type of the landmine and the surrounding soil conditions, which indicates that the parametric acoustic array can be used for further research on the development of acoustic landmine detection engineering system.

Key words: precision instrument and machinery, acoustic landmine detection, parametric acoustic array, acoustic-to-seismic coupling, nonmetallic landmine

中图分类号: 

  • TB51

图1

声波的非线性效应示意图"

图2

声-地震耦合及地雷谐振作用示意图"

图3

声-地震耦合探雷测试系统示意图"

图4

声-地震耦合探雷实验系统"

图5

埋设深度为2 cm时的测试结果"

图6

实验区域网格化划分示意图"

图7

埋设深度为2 cm时地表振动扫描检测结果"

图8

不同埋设深度地表振动检测结果"

图9

不同土壤孔隙度地表振动检测结果"

图10

不同土壤湿度地表振动检测结果"

1 Li Hong-yu, Wang Yi-jia, Chang Hong-wei, et al. Acoustic impedance and its application in seismo-acoustic landmines detection models[J]. Journal of Coastal Research, 2020, 99(Sup.1): 92-98.
2 Wu Zhi-qiang, Duan Nai-yuan, Wang Chi, et al. Experimental study on acoustic-to-seismic landmine detection based on laser self-mixing interferometer[C]∥Sixth International Conference on Optical and Photonic Engineering, Shanghai: Proceedings of SPIE, 2018: No.10827.
3 丁卫, 吴文雯, 王驰, 等. 用非饱和三相孔弹模型研究浅层土壤中地震波的传播特性[J]. 物理学报, 2014, 63(22): 204-212.
Ding Wei, Wu Wen-wen, Wang Chi, et al. Application of unsaturated three-phase pore-shell model to the study of seismic wave propagation characteristics in shallow soil[J]. Acta Physica Sinica, 2014, 63(22): 204-212.
4 Mao Xi, Li Ge-qiang, Wang Chi, et al. Experimental study of acoustic resonance technology for nonmetallic mines detection[J]. Przeglad Elektrotechniczny, 2012, 88(9b): 162-165.
5 Martin J S, Larson G D, Scott W R. An investigation of surface-contacting sensors for the seismic detection of buried landmines[J]. The Journal of Acoustical Society of America, 2006, 120(5): 2676-2685.
6 Gan W S, Yang J, Kamakura T. Parametric acoustic array: theory, advancement, and applications[J]. Applied Acoustics, 2012, 73(12): 1209-1210.
7 周爱国, 阮杰阳, 刘凯, 等. 超声波流量计影响因素的分析及对策[J]. 中国工程机械学报, 2009, 7(4): 469-473.
Zhou Ai-guo, Ruan Jie-yang, Liu Kai, et al. Analysis and strategy for impacts on ultrasonic flowmeters[J]. Chinese Journal of Construction Machinery, 2009, 7(4): 469-473.
8 Gan W S, Yang J, Kamakura T. A review of parametric acoustic array in air[J]. Applied Acoustics, 2012, 73(12): 1211-1219.
9 Zhou H Y, Huang S H, Li W. Parametric acoustic array and its application in underwater acoustic engineering[J]. Sensors, 2020, 20(7): No.2148.
10 Esipov I B, Naugolnykh K, Timoshenko V. The parametric array and long-range ocean research[J]. Acoustics Today, 2010, 6(2): 20-26.
11 Yin Jing-wei, Zhang Xiao, Zhou Yi-ming. Differential pattern time delay shift coding underwater acoustic communication using parametric array[J]. The Journal of the Acoustical Society of America, 2015, 137(4): No. 2214.
12 Qu Ke, Zou Bin-bin, Chen Jing-jing, et al. Experimental study of a broadband parametric acoustic array for sub-bottom profiling in shallow water[J]. Shock and Vibration, 2018, 2018: No. 3619257.
13 汤惠, 杨文旭, 陈飞洋, 等. 声频定向系统超声换能器频率特性及匹配[J].电声技术, 2016, 40(5): 35-39.
Tang Hui, Yang Wen-xu, Chen Fei-yang, et al. Frequency characteristics and matching of ultrasonic transducer in audio frequency directing system[J]. Audio Engineering, 2016, 40(5): 35-39.
14 Nakashima Y, Ohya T, Yoshimura T. Prototype of parametric array loudspeaker on mobile phone and its acoustical characteristics[J]. Audio Engineering Society, 2005, 118: No.6521.
15 Wang Chi, Xie Yu-lai, Li Xing-fei, et al. Analysis of acoustic to seismic coupling technique for buried landmines detection[J]. Chinese Journal of Acoustics, 2009, 28(2): 137-145.
16 Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I: low-frequency range[J]. The Journal of Acoustical Society of America, 1956, 28(2): 168-178.
17 Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅱ: higher frequency range[J]. The Journal of Acoustical Society of America, 1956, 28(2): 179-191.
18 Xiang N, Sabatier J. Applications of acoustic-to-seismic coupling for landmine detection[J/OL]. [2021-01-02].
19 王驰, 刘志刚, 李醒飞, 等. 基于相对声-地震耦合率的声波探雷技术[J]. 天津大学学报, 2008(6): 745-750.
Wang Chi, Liu Zhi-gang, Li Xing-fei, et al. Technology for acoustic landmine detection based on relative acoustic-to-seismic coupling ratio[J]. Journal of Tianjin University, 2008(6): 745-750.
20 Haupt R W, Rolt K. Standoff acoustic laser technique to locate buried land mines[J]. Lincoln Laboratory Journal, 2005, 15: 3-22.
21 丁卫, 沈高炜, 王驰, 等. 用于非金属地雷探测的声-地震耦合识别方法[J]. 光学精密工程, 2014, 22(5): 1331-1338.
Ding Wei, Shen Gao-wei, Wang Chi, et al. Acoustic-to-seismic coupling based discrimination for non-metallic detection[J]. Optics and Precision Engineering, 2014, 22(5): 1331-1338.
22 王驰, 马辉, 李金辉, 等. 激光自混合测振技术在声共振探雷实验中的应用[J]. 光学精密工程, 2021, 29(4): 710-720.
Wang Chi, Ma Hui, Li Jin-hui, et al. Application of laser self-mixing vibration measurement technique in acoustic resonance landmine detection[J]. Optics and Precision Engineering, 2021, 29(4): 710-720.
23 李金辉, 马辉, 杨辰烨, 等. 用于声-地震耦合探雷 的激光测振技术研究进展[J]. 中国光学, 2021, 14(3): 487-502.
Li Jin-hui, Ma Hui, Yang Chen-ye, et al. Research progress of the laser vibration measurement techniques for acoustic-to-seismic coupling landmine detection[J]. Chinese Optics, 2021, 14(3): 487-502.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 安实,李静,崔娜 . ATIS环境下通勤者逐日出行路径更换行为仿真[J]. 吉林大学学报(工学版), 2009, 39(03): 587 -0592 .
[2] 段,孙同景,李振华, 黄长伟, 张光先. 全数字逆变电源IIR Butterworth数字滤波[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 311 -0314 .
[3] 金敬福, 马毅, 刘玉荣, 丛茜. 长耳鸮翼型组的气动特性分析[J]. 吉林大学学报(工学版), 2010, 40(增刊): 278 -0281 .
[4] 金立生,王荣本,高龙,郭烈. 基于区域生长的智能车辆阴影路径图像分割方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 132 -0135 .
[5] 王强,戴景民,何小瓦. 时间延迟对瞬态平面热源法测量热导率的影响[J]. 吉林大学学报(工学版), 2011, 41(03): 711 -715 .
[6] 麻凯1,2,管欣1,2,逄淑一1,2,詹军1,2. 悬架运动学特性一致性的区间控制方法[J]. 吉林大学学报(工学版), 2011, 41(4): 910 -914 .
[7] 于晓辉, 石要武. 色噪声背景下LFM信号参数估计的互谱ESPRIT方法[J]. 吉林大学学报(工学版), 2005, 35(05): 551 -0555 .
[8] 孔繁森,王军,孙海港 . 基于层次分析法的发动机缸体生产线设备可用性的模糊综合评价[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .
[9] 何东野,杨慎华,寇淑清 . 发动机曲轴箱轴承座裂解加工数值分析[J]. 吉林大学学报(工学版), 2009, 39(01): 78 -82 .
[10] 石文孝, 龚静. 基于WiMAX技术的上行调度算法[J]. 吉林大学学报(工学版), 2010, 40(05): 1386 -1391 .