吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (5): 1505-1513.doi: 10.13229/j.cnki.jdxbgxb.20210934

• 通信与控制工程 • 上一篇    

供水管道球形检测器超声波定位技术

李云飞1(),汪炜昊1,付明1,2,张飞1,周扬3   

  1. 1.清华大学 合肥公共安全研究院,合肥 230601
    2.灾害环境人员安全安徽省重点实验室,合肥 230601
    3.清华大学 工程物理系,北京 100084
  • 收稿日期:2021-09-16 出版日期:2023-05-01 发布日期:2023-05-25
  • 作者简介:李云飞(1985-),男,副研究员,博士.研究方向:城市基础设施状态检测技术.E-mail:uc_fly@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFC0809304);安徽省中央引导地方科技发展专项项目(201907d07050007)

Positioning of spherical detector for water supply pipeline based on ultrasonic method

Yun-fei LI1(),Wei-hao WANG1,Ming FU1,2,Fei ZHANG1,Yang ZHOU3   

  1. 1.Hefei Institute for Public Safety Research,Tsinghua University,Hefei 230601,China
    2.Anhui Province Key Laboratory of Human Safety,Hefei 230601,China
    3.Department of Engineering Physics,Tsinghua University,Beijing 100084,China
  • Received:2021-09-16 Online:2023-05-01 Published:2023-05-25

摘要:

针对自主研发的球形检测器在供水管道中的定位需求,设计了一种圆弧形复合超声波振子,基于压电方程,对其振动特性进行理论和仿真分析,得出主要振型和最优工作频率。研究超声波发射电路与复合超声波振子之间阻抗匹配设计,实现最优的超声波能量转换驱动效率。基于小波变换包络检测方法的超声波信号检测技术,计算得出超声波信号传输的精确时间,实现了球形检测器定位系统。经测试,100 m管道长度静态测距定位精度误差约为2%,动态定位距离达到170 m,与惯导数据计算距离之间误差不超过6%,符合球形检测器在供水管道中的实时定位需求。

关键词: 检测技术, 供水管道, 球形检测器, 超声波定位, 复合超声波振子, 阻抗匹配, 包络检测

Abstract:

According to the positioning requirements of the spherical detector independently developed in the water supply pipeline, an arc-shaped composite ultrasonic vibrator is designed. Based on the piezoelectric equation, its vibration characteristics are analyzed theoretically and simulated, and the main vibration modes and the optimal working frequency are obtained. The impedance matching design between the ultrasonic transmitting circuit and the composite ultrasonic vibrator is studied to achieve the optimal ultrasonic energy conversion drive efficiency. Based on ultrasonic signal detection technology of wavelet transform envelope detection method, the accurate time of ultrasonic signal transmission is calculated. The spherical detector positioning system is realized. After testing, the static ranging positioning accuracy of 100 meters of pipeline length is 2%, the dynamic positioning distance reaches 170 meters, and the error between the calculated distance and the inertial navigation data is not more than 6%, which meets the real-time positioning requirements of the spherical detector in the water supply pipeline.

Key words: detection technology, water supply pipeline, spherical detector, ultrasonic positioning, composite ultrasonic vibrator, impedance matching, envelope detection

中图分类号: 

  • TH822

图1

球形检测器超声波定位系统构成"

图2

圆弧形复合超声波振子换能器结构"

图3

超声波发射电路原理图"

图4

超声波振子等效电路模型"

图5

超声波振子阻抗匹配电路"

表1

弧形接触面的径向振动频率"

频率/Hz振型
48 196厚向为主带有径向振动
51 929径向振动
76 553径向振动为主有弯曲振动
81 219径向振动

图6

超声波发射电路仿真"

图7

小波变换包络检测仿真"

图8

不同频率驱动信号下超声波振子实测波形"

图9

静态测试管道示意图"

表2

静态距离测试结果"

实际距离/m测试距离/m相对误差/%实际距离/m测试距离/m相对误差/%
1010.121.207071.331.90
2019.74-1.308079.01-1.24
3030.381.279091.551.72
4039.46-1.35100101.341.34
5049.28-1.44102100.86-1.12
6060.631.05105102.79-2.11

图10

基于户外实际供水管道的运动定位结果"

1 郭新蕾, 马慧敏, 李甲振, 等.管道系统漏损控制技术进展[J].水利水电技术, 2018, 49(6): 65-71.
Guo Xin-lei, Ma Hui-min, Li Jia-zhen, et al. Review on advance of technique for leakage control of pipeline system[J]. Water Resources and Hydropower Engineering, 2018, 49(6): 65-71.
2 周扬, 李云飞, 袁宏永, 等.基于听觉显著图的长输管道漏失检测算法[J].吉林大学学报: 工学版, 2020, 50(4): 1487-1494.
Zhou Yang, Li Yun-fei, Yuan Hong-yong, et al. Identification method of long distance pipeline leakage based on auditory saliency map[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1487-1494.
3 周扬, 张飞, 李云飞, 等. 一种管道状态检测器: 中国[P].
4 刘艳亮, 张海平, 徐彦田, 等.全球卫星导航系统的现状与进展[J].导航定位学报, 2019, 7(1): 18-21+27.
Liu Yan-liang, Zhang Hai-ping, Xu Yan-tian, et al. Development status and trend of global satellite navigation system[J]. Journal of Navigation and Positioning, 2019, 7(1): 18-21+27.
5 王庆峰, 李跃辉, 徐建庆, 等. GPS卫星定位技术在埋地管道腐蚀检测中的应用[J].油气田地面工程, 2003, 22(12): 32.
Wang Qing-feng, Li Yue-hui, Xu Jian-qing, et al. Application of GPS satellite positioning technique to monitor corrosion state of buried pipeline[J]. Oil-gas field Surface Engineering, 2003, 22(12): 32.
6 徐航. 基于矢量磁测的水下管线路由技术研究[D]. 杭州: 杭州电子科技大学机械工程学院, 2020.
Xu Hang. Research on underwater pipeline routing technology based on vector magnetic measurement [D]. Hangzhou: School of Mechanical Engineering, Hangzhou Dianzi University, 2020.
7 Huang K, Zheng D Z, Liu R, et al. The positioning receiver system of pipeline inner detector based on extremely low frequency electromagnetic signal[C]∥13th IEEE International Conference on Electronic Measurement & Instruments, Yangzhou, China, 2017: 145-150.
8 Qi H, Zhang X, Chen H, et al. Tracing and localization system for pipeline robot[J]. Mechatronics, 2009, 19(1): 76-84.
9 Kemppainen A, Haverinen J, Juha R. A distributed multi-robot sensing system using an infrared location system[C]∥ICINCO 2007, Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation 1, Angers, France, 2007: 280-283.
10 Liu Z, Krys D. The use of laser range finder on a robotic platform for pipe inspection[J]. Mechanical Systems and Signal Processing, 2012, 31: 246-257.
11 刘波, 潘舟浩, 李道京, 等.基于毫米波InISAR成像的运动目标探测与定位[J].红外与毫米波学报, 2012, 31(3): 258-264.
Liu Bo, Pan Zhou-hao, Li Dao-jing, et al. Moving target detection and location based on millimeter-wave InISAR imaging[J]. Journal of Infrared and Millimeter Waves, 2012, 31(3): 258-264.
12 燕学智, 王树勋, 马中胜, 等.基于超声红外定位导航研制自动引导车辆系统[J].吉林大学学报: 工学版, 2006, 36(2): 242-246.
Yan Xue-zhi, Wang Shu-xun, Ma Zhong-sheng, et al. Automatic guided vehicle system based on localization and navigation by ultrasonic and infrared[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(2): 242-246.
13 Saad M M.High-accuracy reference-free ultrasonic location estimation[J].IEEE Transactions on Instrumentation and Measurement,2012,61(6): 1561-1570.
14 周乾, 曾周末, 黄新敬, 等.基于主动声学的管道球形内检测器示踪定位方法[J].仪器仪表学报, 2020, 41(8): 217-225.
Zhou Qian, Zeng Zhou-zhou, Huang Xin-jing, et al. Tracing and localization method of spherical inner detector for pipelines based on active acoustics[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 217-225.
15 李云飞, 杨效龙, 张飞, 等.管道检测用圆弧形复合超声波振子设计[J].华中科技大学学报: 自然科学版, 2021, 49(3): 34-39.
Li Yun-fei, Yang Xiao-long, Zhang Fei, et al.Structural design and characteristic analysis of circular arc compound ultrasonic vibrator for pipeline inspection[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(3): 34-39.
16 Pommier-Budinger V, Budinger M, Martinez J,et al. Design method of metallic and composite smart structures with piezoelectric actuators[J]. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009(1): 1361-1368.
17 李云飞, 张飞, 周扬, 等.用于金属密闭空间定位的超声波电路分析与设计[J].传感器与微系统, 2020, 39(5): 68-70.
Li Yun-fei, Zhang Fei, Zhou Yang, et al. Analysis and design of ultrasonic circuit for metal confined space positioning[J]. Transducer and Microsystem Technologies, 2020, 39(5): 68-70.
18 韩丽轩, 于保华, 胡小平.功率超声压电换能器阻抗匹配电路参数化设计[J].压电与声光, 2015, 37(4): 713-716.
Han Li-xuan, Yu Bao-hua, Hu Xiao-ping. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer[J]. Piezoelectric & Acousto-Optics, 2015, 37(4): 713-716.
19 徐宏杰, 罗惠刚.基于小波变换的干涉信号包络提取方法研究[J].半导体光电, 2017, 38(3): 406-409+413.
Xu Hong-jie, Luo Hui-gang. Interference signal envelope extraction of based on wavelet transform method[J]. Semiconductor Optoelectronics, 2017, 38(3): 406-409+413.
20 杨慧娟, 曲喜强, 韩焱.基于小波变换的声波信号包络提取[J].华北工学院学报, 2004(4): 300-302.
Yang Hui-juan, Qu Xi-qiang, Han Yan. Extraction of acoustic signal envelope on the basis of wavelet transform[J]. Journal of North China Institute of Technology, 2004(4): 300-302.
21 刘伯胜, 雷家煜. 水声学原理[M](第2版). 哈尔滨: 哈尔滨工程大学出版社, 2010.
[1] 荆忠胜, 秦玉春, 展鹏. 合成石英晶体Q值的快速分析方法[J]. 吉林大学学报(工学版), 2009, 39(04): 948-952.
[2] 孙永海,何小平,孙瑜 . 基于声波的玉米含水量测定[J]. 吉林大学学报(工学版), 2007, 37(03): 726-0730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!